1887

Abstract

Intracellular pathogens such as serovar Typhimurium (. Typhimurium) manipulate their host cells through the interplay of various virulence factors. A multitude of such virulence factors are encoded on the genome of . Typhimurium and are usually organized in pathogenicity islands. The virulence-associated genomic stretch of has structural features of pathogenicity islands and is present exclusively in non-typhoidal serovars of . It encodes metabolic enzymes predicted to be involved in methylglyoxal metabolism. -encoded lactoylglutathione lyase significantly impacts the proliferation of intracellular . The deletion mutant of ) fails to grow in epithelial cells but hyper-replicates in macrophages. This difference in proliferation outcome was the consequence of failure to detoxify methylglyoxal by Δ, which was also reflected in the form of oxidative DNA damage and upregulation of in the mutant. Within macrophages, the toxicity of methylglyoxal adducts elicits the potassium efflux channel (KefB) in the mutant which subsequently modulates the acidification of mutant-containing vacuoles (MCVs). The perturbation in the pH of the MCV milieu and bacterial cytosol enhances the pathogenicity island 2 translocation in Δ, increasing its net growth within macrophages. In epithelial cells, however, the maturation of Δ-containing vacuoles were affected as these non-phagocytic cells maintain less acidic vacuoles compared to those in macrophages. Remarkably, ectopic expression of Toll-like receptors 2 and 4 on epithelial cells partially restored the survival of Δ. This study identified a novel metabolic enzyme in . Typhimurium whose activity during intracellular infection within a given host cell type differentially affected the virulence of the bacteria.

Funding
This study was supported by the:
  • Indian Institute of Science (Award Provision (2A) Tenth Plan (191/MCB))
  • Department of Biotechnology (Award DBT 311)
  • Life Science Research Board (Award LSRB0008)
  • DBT–IISc Partnership Program for Advanced Research in Biological Sciences and Bioengineering
  • Indian Council of Medical Research
  • Department of Science and Technology
  • University Grants Commission
  • Council of Scientific and Industrial Research
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078998-0
2014-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1999.html?itemId=/content/journal/micro/10.1099/mic.0.078998-0&mimeType=html&fmt=ahah

References

  1. Arpaia N., Godec J., Lau L., Sivick K. E., McLaughlin L. M., Jones M. B., Dracheva T., Peterson S. N., Monack D. M., Barton G. M. ( 2011). TLR signaling is required for Salmonella typhimurium virulence. Cell 144:675–688 [View Article][PubMed]
    [Google Scholar]
  2. Bernardo J., Long H. J., Simons E. R. ( 2010). Initial cytoplasmic and phagosomal consequences of human neutrophil exposure to Staphylococcus epidermidis . Cytometry A 77:243–252[PubMed]
    [Google Scholar]
  3. Booth I. R., Ferguson G. P., Miller S., Li C., Gunasekera B., Kinghorn S. ( 2003). Bacterial production of methylglyoxal: a survival strategy or death by misadventure. Biochem Soc Trans 31:1406–1408 [View Article][PubMed]
    [Google Scholar]
  4. Brown N. F., Vallance B. A., Coombes B. K., Valdez Y., Coburn B. A., Finlay B. B. ( 2005). Salmonella pathogenicity island 2 is expressed prior to penetrating the intestine. PLoS Pathog 1:e32 [View Article][PubMed]
    [Google Scholar]
  5. Brumell J. H., Tang P., Zaharik M. L., Finlay B. B. ( 2002). Disruption of the Salmonella-containing vacuole leads to increased replication of Salmonella enterica serovar Typhimurium in the cytosol of epithelial cells. Infect Immun 70:3264–3270 [View Article][PubMed]
    [Google Scholar]
  6. Campos-Bermudez V. A., Leite N. R., Krog R., Costa-Filho A. J., Soncini F. C., Oliva G., Vila A. J. ( 2007). Biochemical and structural characterization of Salmonella typhimurium glyoxalase II: new insights into metal ion selectivity. Biochemistry 46:11069–11079 [View Article][PubMed]
    [Google Scholar]
  7. Cano D. A., Martínez-Moya M., Pucciarelli M. G., Groisman E. A., Casadesús J., García-Del Portillo F. ( 2001). Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect Immun 69:6463–6474 [View Article][PubMed]
    [Google Scholar]
  8. Cario E., Podolsky D. K. ( 2000). Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68:7010–7017 [View Article][PubMed]
    [Google Scholar]
  9. Chakravortty D., Hansen-Wester I., Hensel M. ( 2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195:1155–1166 [View Article][PubMed]
    [Google Scholar]
  10. Charles R. C., Harris J. B., Chase M. R., Lebrun L. M., Sheikh A., LaRocque R. C., Logvinenko T., Rollins S. M., Tarique A. & other authors ( 2009). Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. PLoS ONE 4:e6994 [View Article][PubMed]
    [Google Scholar]
  11. Chauhan S. C., Madhubala R. ( 2009). Glyoxalase I gene deletion mutants of Leishmania donovani exhibit reduced methylglyoxal detoxification. PLoS ONE 4:e6805 [View Article][PubMed]
    [Google Scholar]
  12. Clugston S. L., Yajima R., Honek J. F. ( 2004). Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies. Biochem J 377:309–316 [View Article][PubMed]
    [Google Scholar]
  13. Coombes B. K., Brown N. F., Valdez Y., Brumell J. H., Finlay B. B. ( 2004). Expression and secretion of Salmonella pathogenicity island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL. J Biol Chem 279:49804–49815 [View Article][PubMed]
    [Google Scholar]
  14. Coombes B. K., Wickham M. E., Lowden M. J., Brown N. F., Finlay B. B. ( 2005). Negative regulation of Salmonella pathogenicity island 2 is required for contextual control of virulence during typhoid. Proc Natl Acad Sci U S A 102:17460–17465 [View Article][PubMed]
    [Google Scholar]
  15. Cordeiro C., Ponces Freire A. ( 1996). Methylglyoxal assay in cells as 2-methylquinoxaline using 1,2-diaminobenzene as derivatizing reagent. Anal Biochem 234:221–224 [CrossRef]
    [Google Scholar]
  16. Dandekar T., Astrid F., Jasmin P., Hensel M. ( 2012). Salmonella enterica: a surprisingly well-adapted intracellular lifestyle. Front Microbiol 3:164 [View Article][PubMed]
    [Google Scholar]
  17. Das P., Lahiri A., Lahiri A., Sen M., Iyer N., Kapoor N., Balaji K. N., Chakravortty D. ( 2010). Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth. PLoS ONE 5:e15466 [View Article][PubMed]
    [Google Scholar]
  18. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  19. Dieye Y., Ameiss K., Mellata M., Curtiss R. III ( 2009). The Salmonella Pathogenicity Island (SPI) 1 contributes more than SPI2 to the colonization of the chicken by Salmonella enterica serovar Typhimurium. BMC Microbiol 9:3 [View Article][PubMed]
    [Google Scholar]
  20. Drecktrah D., Levine-Wilkinson S., Dam T., Winfree S., Knodler L. A., Schroer T. A., Steele-Mortimer O. ( 2008). Dynamic behavior of Salmonella-induced membrane tubules in epithelial cells. Traffic 9:2117–2129 [View Article][PubMed]
    [Google Scholar]
  21. Ehrbar K., Friebel A., Miller S. I., Hardt W. D. ( 2003). Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1. J Bacteriol 185:6950–6967 [View Article][PubMed]
    [Google Scholar]
  22. Eisenreich W., Dandekar T., Heesemann J., Goebel W. ( 2010). Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412 [View Article][PubMed]
    [Google Scholar]
  23. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C. ( 2003). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica . Mol Microbiol 47:103–118 [View Article][PubMed]
    [Google Scholar]
  24. Eswarappa S. M., Panguluri K. K., Hensel M., Chakravortty D. ( 2008). The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence. Microbiology 154:666–678 [View Article][PubMed]
    [Google Scholar]
  25. Eswarappa S. M., Karnam G., Nagarajan A. G., Chakraborty S., Chakravortty D. ( 2009). lac repressor is an antivirulence factor of Salmonella enterica: its role in the evolution of virulence in Salmonella . PLoS ONE 4:e5789 [View Article][PubMed]
    [Google Scholar]
  26. Ferguson G. P., Booth I. R. ( 1998). Importance of glutathione for growth and survival of Escherichia coli cells: detoxification of methylglyoxal and maintenance of intracellular K+ . J Bacteriol 180:4314–4318[PubMed]
    [Google Scholar]
  27. Ferguson G. P., McLaggan D., Booth I. R. ( 1995). Potassium channel activation by glutathione-S-conjugates in Escherichia coli: protection against methylglyoxal is mediated by cytoplasmic acidification. Mol Microbiol 17:1025–1033 [View Article][PubMed]
    [Google Scholar]
  28. Ferguson G. P., Nikolaev Y., McLaggan D., Maclean M., Booth I. R. ( 1997). Survival during exposure to the electrophilic reagent N-ethylmaleimide in Escherichia coli: role of KefB and KefC potassium channels. J Bacteriol 179:1007–1012[PubMed]
    [Google Scholar]
  29. Ferguson G. P., Tötemeyer S., MacLean M. J., Booth I. R. ( 1998). Methylglyoxal production in bacteria: suicide or survival. Arch Microbiol 170:209–218 [View Article][PubMed]
    [Google Scholar]
  30. Fields P. I., Swanson R. V., Haidaris C. G., Heffron F. ( 1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A 83:5189–5193 [View Article][PubMed]
    [Google Scholar]
  31. Ganz T. ( 2003). Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720 [View Article][PubMed]
    [Google Scholar]
  32. Haneda T., Ishii Y., Danbara H., Okada N. ( 2009). Genome-wide identification of novel genomic islands that contribute to Salmonella virulence in mouse systemic infection. FEMS Microbiol Lett 297:241–249 [View Article][PubMed]
    [Google Scholar]
  33. Haraga A., Ohlson M. B., Miller S. I. ( 2008). Salmonellae interplay with host cells. Nat Rev Microbiol 6:53–66 [View Article][PubMed]
    [Google Scholar]
  34. Hautefort I., Thompson A., Eriksson-Ygberg S., Parker M. L., Lucchini S., Danino V., Bongaerts R. J. M., Ahmad N., Rhen M., Hinton J. C. ( 2008). During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10:958–984 [View Article][PubMed]
    [Google Scholar]
  35. Hölzer S. U., Hensel M. ( 2010). Functional dissection of translocon proteins of the Salmonella pathogenicity island 2-encoded type III secretion system. BMC Microbiol 10:104 [View Article][PubMed]
    [Google Scholar]
  36. Hornef M. W., Frisan T., Vandewalle A., Normark S., Richter-Dahlfors A. ( 2002). Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med 195:559–570 [View Article][PubMed]
    [Google Scholar]
  37. Jantsch J., Chikkaballi D., Hensel M. ( 2011). Cellular aspects of immunity to intracellular Salmonella enterica . Immunol Rev 240:185–195 [View Article][PubMed]
    [Google Scholar]
  38. Kim J., Kim O. S., Kim C. S., Sohn E., Jo K., Kim J. S. ( 2012). Accumulation of argpyrimidine, a methylglyoxal-derived advanced glycation end product, increases apoptosis of lens epithelial cells both in vitro and in vivo . Exp Mol Med 44:167–175 [View Article][PubMed]
    [Google Scholar]
  39. Korithoski B., Lévesque C. M., Cvitkovitch D. G. ( 2007). Involvement of the detoxifying enzyme lactoylglutathione lyase in Streptococcus mutans aciduricity. J Bacteriol 189:7586–7592 [View Article][PubMed]
    [Google Scholar]
  40. Lara-Tejero M., Galán J. E. ( 2009). Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect Immun 77:2635–2642 [View Article][PubMed]
    [Google Scholar]
  41. Lostroh C. P., Lee C. A. ( 2001). The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect 3:1281–1291 [View Article][PubMed]
    [Google Scholar]
  42. Lucchini S., Liu H., Jin Q., Hinton J. C., Yu J. ( 2005). Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen. Infect Immun 73:88–102 [View Article][PubMed]
    [Google Scholar]
  43. MacLean M. J., Ness L. S., Ferguson G. P., Booth I. R. ( 1998). The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli . Mol Microbiol 27:563–571 [View Article][PubMed]
    [Google Scholar]
  44. Marathe S. A., Ray S., Chakravortty D. ( 2010). Curcumin increases the pathogenicity of Salmonella enterica serovar Typhimurium in murine model. PLoS ONE 5:e11511 [View Article][PubMed]
    [Google Scholar]
  45. Marathe S. A., Sen M., Dasgupta I., Chakravortty D. ( 2012). Differential modulation of intracellular survival of cytosolic and vacuolar pathogens by curcumin. Antimicrob Agents Chemother 56:5555–5567 [View Article][PubMed]
    [Google Scholar]
  46. Mercado-Lubo R., Leatham M. P., Conway T., Cohen P. S. ( 2009). Salmonella enterica serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice. Infect Immun 77:1397–1405 [View Article][PubMed]
    [Google Scholar]
  47. Nuding S., Fellermann K., Wehkamp J., Mueller H. A., Stange E. F. ( 2006). A flow cytometric assay to monitor antimicrobial activity of defensins and cationic tissue extracts. J Microbiol Methods 65:335–345 [View Article][PubMed]
    [Google Scholar]
  48. Ozyamak E., Black S. S., Walker C. A., Maclean M. J., Bartlett W., Miller S., Booth I. R. ( 2010). The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli . Mol Microbiol 78:1577–1590 [View Article][PubMed]
    [Google Scholar]
  49. Perrin A. J., Jiang X., Birmingham C. L., So N. S., Brumell J. H. ( 2004). Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr Biol 14:806–811 [View Article][PubMed]
    [Google Scholar]
  50. Pujol C., Grabenstein J. P., Perry R. D., Bliska J. B. ( 2005). Replication of Yersinia pestis in interferon γ-activated macrophages requires ripA, a gene encoded in the pigmentation locus. Proc Natl Acad Sci U S A 102:12909–12914 [View Article][PubMed]
    [Google Scholar]
  51. Rachman H., Kim N., Ulrichs T., Baumann S., Pradl L., Nasser Eddine A., Bild M., Rother M., Kuban R. J. & other authors ( 2006). Critical role of methylglyoxal and AGE in mycobacteria-induced macrophage apoptosis and activation. PLoS ONE 1:e29 [View Article][PubMed]
    [Google Scholar]
  52. Rathman M., Sjaastad M. D., Falkow S. ( 1996). Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect Immun 64:2765–2773[PubMed]
    [Google Scholar]
  53. Santiviago C. A., Reynolds M. M., Porwollik S., Choi S.-H., Long F., Andrews-Polymenis H. L., McClelland M. ( 2009). Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog 5:e1000477 [View Article][PubMed]
    [Google Scholar]
  54. Sasikaran J., Ziemski M., Zadora P. K., Fleig A., Berg I. A. ( 2014). Bacterial itaconate degradation promotes pathogenicity. Nat Chem Biol 10:371–377 [View Article][PubMed]
    [Google Scholar]
  55. Shah D. H., Lee M. J., Park J. H., Lee J. H., Eo S. K., Kwon J. T., Chae J. S. ( 2005). Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology 151:3957–3968 [View Article][PubMed]
    [Google Scholar]
  56. Shi L., Adkins J. N., Coleman J. R., Schepmoes A. A., Dohnkova A., Mottaz H. M., Norbeck A. D., Purvine S. O., Manes N. P. & other authors ( 2006). Proteomic analysis of Salmonella enterica serovar Typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar Typhimurium inside macrophages. J Biol Chem 281:29131–29140 [View Article][PubMed]
    [Google Scholar]
  57. Steele-Mortimer O. ( 2008). The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol 11:38–45 [View Article][PubMed]
    [Google Scholar]
  58. Thornalley P. J. ( 2008). Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems – role in ageing and disease. Drug Metabol Drug Interact 23:125–150 [View Article][PubMed]
    [Google Scholar]
  59. Tötemeyer S., Booth N. A., Nichols W. W., Dunbar B., Booth I. R. ( 1998). From famine to feast: the role of methylglyoxal production in Escherichia coli . Mol Microbiol 27:553–562 [View Article][PubMed]
    [Google Scholar]
  60. Wong D., Bach H., Sun J., Hmama Z., Av-Gay Y. ( 2011). Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci U S A 108:19371–19376 [View Article][PubMed]
    [Google Scholar]
  61. Yadav S. K., Singla-Pareek S. L., Ray M., Reddy M. K., Sopory S. K. ( 2005). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67 [View Article][PubMed]
    [Google Scholar]
  62. Yu X. J., McGourty K., Liu M., Unsworth K. E., Holden D. W. ( 2010). pH sensing by intracellular Salmonella induces effector translocation. Science 328:1040–1043 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078998-0
Loading
/content/journal/micro/10.1099/mic.0.078998-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error