1887

Abstract

The multidrug efflux operon of is regulated by the NfxB repressor. Two forms of NfxB have been reported [Shiba (1995). , 5872) although mutagenesis studies here confirm that the larger protein (199 amino acids, 22.4 kDa) is the functional repressor. NfxB binds upstream of the transcription initiation site to a region containing two inverted repeats, both of which are required for binding. Two-hybrid assays confirmed that NfxB is a multimer, with the C-terminal two-thirds of the repressor required for multimerization. Random mutagenesis identified several mutations within the C-terminal region of NfxB required for multimerization, all of which mapped to a three-helix subdomain of the C-terminal region in a structural model of the repressor, which may thus represent the multimerization domain. These mutations compromised NfxB binding to its target DNA in electromobility shift assays, and their introduction into the chromosome of enhanced expression and promoted multidrug resistance, consistent with the functional NfxB repressor being a multimer. Site-directed and spontaneous mutants showing increased expression and multidrug resistance were also recovered, with mutations mapping to the three-helix subdomain again impacting multimerization and DNA binding. Mutations mapping to the N-terminal helix–turn–helix motif implicated in DNA binding did not impact multimerization although they did render the repressor insoluble and unsuitable for mobility shift assays. Size exclusion column chromatography demonstrated that wild-type NfxB forms tetramers in solution, although a mutant form of the repressor carrying a G192D substitution near the C terminus of the protein and compromised for DNA binding and repressor activity forms dimers. These results suggest that NfxB operates as a tetramer (dimer of dimers) and that the C terminus of the protein serves as a tetramerization domain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069286-0
2013-10-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2058.html?itemId=/content/journal/micro/10.1099/mic.0.069286-0&mimeType=html&fmt=ahah

References

  1. Alberti S., Oehler S., von Wilcken-Bergmann B., Krämer H., Müller-Hill B.( 1991). Dimer-to-tetramer assembly of Lac repressor involves a leucine heptad repeat. New Biol 3:57–62[PubMed]
    [Google Scholar]
  2. Arnold K., Bordoli L., Kopp J., Schwede T.( 2006). The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201 [View Article][PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.( 1992). Short Protocols in Molecular Biology, 2nd edn. New York: Wiley;
    [Google Scholar]
  4. Benkert P., Tosatto S. C., Schomburg D.( 2008). qmean: a comprehensive scoring function for model quality assessment. Proteins 71:261–277 [View Article][PubMed]
    [Google Scholar]
  5. Caughlan R. E., Jones A. K., Delucia A. M., Woods A. L., Xie L., Ma B., Barnes S. W., Walker J. R., Sprague E. R.& other authors ( 2012). Mechanisms decreasing in vitro susceptibility to the LpxC inhibitor CHIR-090 in the Gram-negative pathogen Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:17–27 [View Article][PubMed]
    [Google Scholar]
  6. Chiang W. C., Pamp S. J., Nilsson M., Givskov M., Tolker-Nielsen T.( 2012). The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. FEMS Immunol Med Microbiol 65:245–256 [View Article][PubMed]
    [Google Scholar]
  7. Choi K. H., Schweizer H. P.( 2005). An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol 5:30 [View Article][PubMed]
    [Google Scholar]
  8. Choi K. H., Kumar A., Schweizer H. P.( 2006). A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397 [View Article][PubMed]
    [Google Scholar]
  9. Christen M., Hünenberger P. H., Bakowies D., Baron R., Bürgi R., Geerke D. P., Heinz T. N., Kastenholz M. A., Kräutler V.& other authors ( 2005). The gromos software for biomolecular simulation: gromos05. J Comput Chem 26:1719–1751 [View Article][PubMed]
    [Google Scholar]
  10. Chuanchuen R., Beinlich K., Hoang T. T., Becher A., Karkhoff-Schweizer R. R., Schweizer H. P.( 2001). Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 45:428–432 [View Article][PubMed]
    [Google Scholar]
  11. Daddaoua A., Krell T., Ramos J. L.( 2009). Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and Entner–Doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J Biol Chem 284:21360–21368 [View Article][PubMed]
    [Google Scholar]
  12. Dean C. R., Visalli M. A., Projan S. J., Sum P. E., Bradford P. A.( 2003). Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47:972–978 [View Article][PubMed]
    [Google Scholar]
  13. Dimitrova M., Younès-Cauet G., Oertel-Buchheit P., Porte D., Schnarr M., Granger-Schnarr M.( 1998). A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Mol Gen Genet 257:205–212 [View Article][PubMed]
    [Google Scholar]
  14. Dong F., Spott S., Zimmermann O., Kisters-Woike B., Müller-Hill B., Barker A.( 1999). Dimerisation mutants of lac repressor. I. A monomeric mutant, L251A, that binds lac operator DNA as a dimer. J Mol Biol 290:653–666 [View Article][PubMed]
    [Google Scholar]
  15. Esbelin J., Jouanneau Y., Armengaud J., Duport C.( 2008). ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus. J Bacteriol 190:4242–4251 [View Article][PubMed]
    [Google Scholar]
  16. Evans K., Adewoye L., Poole K.( 2001). MexR repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa: identification of MexR binding sites in the mexA-mexR intergenic region. J Bacteriol 183:807–812 [View Article][PubMed]
    [Google Scholar]
  17. Fraud S., Campigotto A. J., Chen Z., Poole K.( 2008). MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 52:4478–4482 [View Article][PubMed]
    [Google Scholar]
  18. Gillis R. J., White K. G., Choi K. H., Wagner V. E., Schweizer H. P., Iglewski B. H.( 2005). Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 49:3858–3867 [View Article][PubMed]
    [Google Scholar]
  19. Henrichfreise B., Wiegand I., Pfister W., Wiedemann B.( 2007). Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 51:4062–4070 [View Article][PubMed]
    [Google Scholar]
  20. Hershberger C. D., Ye R. W., Parsek M. R., Xie Z. D., Chakrabarty A. M.( 1995). The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative σ factor (σE). Proc Natl Acad Sci U S A 92:7941–7945 [View Article][PubMed]
    [Google Scholar]
  21. Higgins P. G., Fluit A. C., Milatovic D., Verhoef J., Schmitz F. J.( 2003). Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 21:409–413 [View Article][PubMed]
    [Google Scholar]
  22. Hirai K., Suzue S., Irikura T., Iyobe S., Mitsuhashi S.( 1987). Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 31:582–586 [View Article][PubMed]
    [Google Scholar]
  23. Hirakata Y., Srikumar R., Poole K., Gotoh N., Suematsu T., Kohno S., Kamihira S., Hancock R. E., Speert D. P.( 2002). Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 196:109–118 [View Article][PubMed]
    [Google Scholar]
  24. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.( 1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86 [View Article][PubMed]
    [Google Scholar]
  25. Hohnadel D., Haas D., Meyer J.-M.( 1986). Mapping of mutations affecting pyoverdine production in Pseudomonas aeruginosa. FEMS Microbiol Lett 36:195–199 [View Article]
    [Google Scholar]
  26. Jakics E. B., Iyobe S., Hirai K., Fukuda H., Hashimoto H.( 1992). Occurrence of the nfxB type mutation in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 36:2562–2565 [View Article][PubMed]
    [Google Scholar]
  27. Jalal S., Wretlind B.( 1998). Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist 4:257–261 [View Article][PubMed]
    [Google Scholar]
  28. Jalal S., Ciofu O., Hoiby N., Gotoh N., Wretlind B.( 2000). Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 44:710–712 [View Article][PubMed]
    [Google Scholar]
  29. Jeannot K., Elsen S., Köhler T., Attree I., van Delden C., Plésiat P.( 2008). Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump. Antimicrob Agents Chemother 52:2455–2462 [View Article][PubMed]
    [Google Scholar]
  30. Jo J. T., Brinkman F. S., Hancock R. E.( 2003). Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Antimicrob Agents Chemother 47:1101–1111 [View Article][PubMed]
    [Google Scholar]
  31. Join-Lambert O. F., Michéa-Hamzehpour M., Köhler T., Chau F., Faurisson F., Dautrey S., Vissuzaine C., Carbon C., Pechère J. C.( 2001). Differential selection of multidrug efflux mutants by trovafloxacin and ciprofloxacin in an experimental model of Pseudomonas aeruginosa acute pneumonia in rats. Antimicrob Agents Chemother 45:571–576 [View Article][PubMed]
    [Google Scholar]
  32. Kim B., Little J. W.( 1992). Dimerization of a specific DNA-binding protein on the DNA. Science 255:203–206 [View Article][PubMed]
    [Google Scholar]
  33. Kiser T. H., Obritsch M. D., Jung R., MacLaren R., Fish D. N.( 2010). Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Pharmacotherapy 30:632–638 [View Article][PubMed]
    [Google Scholar]
  34. Köhler T., Michea-Hamzehpour M., Plesiat P., Kahr A. L., Pechere J. C.( 1997). Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother 41:2540–2543[PubMed]
    [Google Scholar]
  35. Lewis M., Chang G., Horton N. C., Kercher M. A., Pace H. C., Schumacher M. A., Brennan R. G., Lu P.( 1996). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271:1247–1254 [View Article][PubMed]
    [Google Scholar]
  36. Li X. Z., Zhang L., Poole K.( 1998). Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 180:2987–2991[PubMed]
    [Google Scholar]
  37. Lu D., Fillet S., Meng C., Alguel Y., Kloppsteck P., Bergeron J., Krell T., Gallegos M. T., Ramos J., Zhang X.( 2010). Crystal structure of TtgV in complex with its DNA operator reveals a general model for cooperative DNA binding of tetrameric gene regulators. Genes Dev 24:2556–2565 [View Article][PubMed]
    [Google Scholar]
  38. Mandsberg L. F., Maciá M. D., Bergmann K. R., Christiansen L. E., Alhede M., Kirkby N., Høiby N., Oliver A., Ciofu O.( 2011). Development of antibiotic resistance and up-regulation of the antimutator gene pfpI in mutator Pseudomonas aeruginosa due to inactivation of two DNA oxidative repair genes (mutY, mutM). FEMS Microbiol Lett 324:28–37 [View Article][PubMed]
    [Google Scholar]
  39. Martin D. W., Holloway B. W., Deretic V.( 1993). Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 175:1153–1164[PubMed]
    [Google Scholar]
  40. Masuda N., Ohya S.( 1992). Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother 36:1847–1851 [View Article][PubMed]
    [Google Scholar]
  41. Masuda N., Sakagawa E., Ohya S.( 1995). Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:645–649 [View Article][PubMed]
    [Google Scholar]
  42. Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T.( 2000). Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3322–3327 [View Article][PubMed]
    [Google Scholar]
  43. Miller J. H.( 1992). A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Plainview, NY: Cold Spring Harbour Laboratory;
    [Google Scholar]
  44. Monferrer D., Tralau T., Kertesz M. A., Dix I., Solà M., Usón I.( 2010). Structural studies on the full-length LysR-type regulator TsaR from Comamonas testosteroni T-2 reveal a novel open conformation of the tetrameric LTTR fold. Mol Microbiol 75:1199–1214 [View Article][PubMed]
    [Google Scholar]
  45. Morita Y., Murata T., Mima T., Shiota S., Kuroda T., Mizushima T., Gotoh N., Nishino T., Tsuchiya T.( 2003). Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 51:991–994 [View Article][PubMed]
    [Google Scholar]
  46. Mulet X., Maciá M. D., Mena A., Juan C., Pérez J. L., Oliver A.( 2009). Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants. Antimicrob Agents Chemother 53:1552–1560 [View Article][PubMed]
    [Google Scholar]
  47. Muraoka S., Okumura R., Ogawa N., Nonaka T., Miyashita K., Senda T.( 2003). Crystal structure of a full-length LysR-type transcriptional regulator, CbnR: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. J Mol Biol 328:555–566 [View Article][PubMed]
    [Google Scholar]
  48. Nehme D., Li X. Z., Elliot R., Poole K.( 2004). Assembly of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB. J Bacteriol 186:2973–2983 [View Article][PubMed]
    [Google Scholar]
  49. Poole K.( 2000). Efflux-mediated resistance to fluoroquinolones in Gram-negative bacteria. Antimicrob Agents Chemother 44:2233–2241 [View Article][PubMed]
    [Google Scholar]
  50. Poole K.( 2011). Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65 [View Article][PubMed]
    [Google Scholar]
  51. Poole K.( 2012). Efflux-mediated antimicrobial resistance. Antibiotic Discovery and Development349–395 Dougherty T. J., Pucci M. J. New York: Springer; [View Article]
    [Google Scholar]
  52. Poole K., Gotoh N., Tsujimoto H., Zhao Q., Wada A., Yamasaki T., Neshat S., Yamagishi J., Li X. Z., Nishino T.( 1996). Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713–725 [View Article][PubMed]
    [Google Scholar]
  53. Rédly G. A., Poole K.( 2003). Pyoverdine-mediated regulation of FpvA synthesis in Pseudomonas aeruginosa: involvement of a probable extracytoplasmic-function sigma factor, FpvI. J Bacteriol 185:1261–1265 [View Article][PubMed]
    [Google Scholar]
  54. Reinhardt A., Köhler T., Wood P., Rohner P., Dumas J. L., Ricou B., van Delden C.( 2007). Development and persistence of antimicrobial resistance in Pseudomonas aeruginosa: a longitudinal observation in mechanically ventilated patients. Antimicrob Agents Chemother 51:1341–1350 [View Article][PubMed]
    [Google Scholar]
  55. Rhee J. E., Sheng W., Morgan L. K., Nolet R., Liao X., Kenney L. J.( 2008). Amino acids important for DNA recognition by the response regulator OmpR. J Biol Chem 283:8664–8677 [View Article][PubMed]
    [Google Scholar]
  56. Sambrook J., Russell D. W.( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  57. Sheu D. S., Wang Y. T., Lee C. Y.( 2000). Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146:2019–2025[PubMed]
    [Google Scholar]
  58. Shiba T., Ishiguro K., Takemoto N., Koibuchi H., Sugimoto K.( 1995). Purification and characterization of the Pseudomonas aeruginosa NfxB protein, the negative regulator of the nfxB gene. J Bacteriol 177:5872–5877[PubMed]
    [Google Scholar]
  59. Simon R., Priefer U., Pühler A.( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nature Biotechnol 1:784–791 [View Article]
    [Google Scholar]
  60. Singh V., Ekka M. K., Kumaran S.( 2012). Second monomer binding is the rate-limiting step in the formation of the dimeric PhoP–DNA complex. Biochemistry 51:1346–1356 [View Article][PubMed]
    [Google Scholar]
  61. Sobel M. L., McKay G. A., Poole K.( 2003). Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 47:3202–3207 [View Article][PubMed]
    [Google Scholar]
  62. Srikumar R., Li X. Z., Poole K.( 1997). Inner membrane efflux components are responsible for β-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa. J Bacteriol 179:7875–7881[PubMed]
    [Google Scholar]
  63. Srikumar R., Kon T., Gotoh N., Poole K.( 1998). Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. Antimicrob Agents Chemother 42:65–71[PubMed]
    [Google Scholar]
  64. Starr L. M., Fruci M., Poole K.( 2012). Pentachlorophenol induction of the Pseudomonas aeruginosa mexAB-oprM efflux operon: involvement of repressors NalC and MexR and the antirepressor ArmR. PLoS ONE 7:e32684 [View Article][PubMed]
    [Google Scholar]
  65. Studier F. W.( 1991). Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44 [View Article][PubMed]
    [Google Scholar]
  66. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.( 1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89 [View Article][PubMed]
    [Google Scholar]
  67. Suckow J., Markiewicz P., Kleina L. G., Miller J., Kisters-Woike B., Müller-Hill B.( 1996). Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol 261:509–523 [View Article][PubMed]
    [Google Scholar]
  68. Yoshida T., Muratani T., Iyobe S., Mitsuhashi S.( 1994). Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 38:1466–1469 [View Article][PubMed]
    [Google Scholar]
  69. Yu H., Schurr M. J., Deretic V.( 1995). Functional equivalence of Escherichia coli σE and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. J Bacteriol 177:3259–3268[PubMed]
    [Google Scholar]
  70. Zhanel G. G., Hoban D. J., Schurek K., Karlowsky J. A.( 2004). Role of efflux mechanisms on fluoroquinolone resistance in Streptococcus pneumoniae and Pseudomonas aeruginosa. Int J Antimicrob Agents 24:529–535 [View Article][PubMed]
    [Google Scholar]
  71. Zhang R. G., Kim Y., Skarina T., Beasley S., Laskowski R., Arrowsmith C., Edwards A., Joachimiak A., Savchenko A.( 2002). Crystal structure of Thermotoga maritima 0065, a member of the IclR transcriptional factor family. J Biol Chem 277:19183–19190 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069286-0
Loading
/content/journal/micro/10.1099/mic.0.069286-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error