1887

Abstract

In the complete genome sequence of the cyanobacterium sp. strain PCC 6803 [Kaneko (1996 ). 3, 109–136] genes were identified encoding putative group 3 σ-factors SigH (Sll-0856), SigG (Slr-1545) and SigF (Slr-1564) and the regulatory protein RsbU (Slr-2031). Mutations in these genes were generated by interposon mutagenesis to study their importance in stress acclimation. For the genes , and , the loci segregated completely. However, attempts to mutagenize the locus resulted in merodiploids. Under standard growth conditions only minor differences were detected between the mutants and wild-type. However, cells of the RsbU mutant showed a clear defect in regenerating growth after a nitrogen- and sulphur-starvation-induced stationary phase. After applying salt, heat and high-light shocks, stress protein synthesis was analysed by means of one- and two-dimensional electrophoresis. Cells of the SigF mutant showed a severe defect in the induction of salt stress proteins. Although the acclimation to moderate salt stress up to 684 mM NaCl was not significantly changed in this mutant, its ability to acclimate to higher concentrations of NaCl was reduced. Northern blot experiments showed a constitutive expression of the and genes. The expression of the gene was found to be stress-stimulated, particularly in heat-shocked cells, whilst that of was transiently decreased under stress conditions. Possible functions of these regulatory proteins in stress acclimation of cells are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2877
2000-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462877a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2877&mimeType=html&fmt=ahah

References

  1. Allen M. B., Arnon D. I. 1955; Studies on nitrogen fixing blue-green algae. II. The sodium requirement of Anabaena cylindrica. Physiol Plant 8:653–660 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Asayama M., Suzuki A., Nozawa S., Yamada A., Tanaka K., Takahashi H., Aida T., Shirai M. 1997; A new sigma factor homolog in a cyanobacterium: cloning, sequencing, and light-responsive transcripts of rpoD2 from Microcystis aeruginosa K-81. Biochim Biophys Acta 1351:31–36 [CrossRef]
    [Google Scholar]
  4. Bhaya D., Watanabe N., Ogawa T., Grossman A. R. 1999; The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC6803. Proc Natl Acad Sci U S A 96:3188–3193 [CrossRef]
    [Google Scholar]
  5. Brahamsha B., Haselkorn R. 1992; Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: cloning, expression, and inactivation of the sigB and sigC genes. J Bacteriol 174:7273–7282
    [Google Scholar]
  6. Cambell E. L., Brahamsha B., Meeks J. C. 1998; Mutation of an alternative sigma factor in the cyanobacterium Nostoc punctiforme results in increased infection of its symbiotic plant partner, Anthoceros punctatus. J Bacteriol 180:4938–4941
    [Google Scholar]
  7. Caslake L. F., Gruber T. M., Bryant D. A. 1997; Expression of two alternative sigma factors of Synechococcus sp. strain PCC 7002 is modulated by carbon and nitrogen stress. Microbiology 143:3807–3818 [CrossRef]
    [Google Scholar]
  8. Fulda S., Huckauf J., Schoor A., Hagemann M. 1999; Analysis of stress responses in the cyanobacterial strains Synechococcus sp. PCC 7942, Synechocystis sp. PCC 6803, and Synechococcus sp. PCC 7418: osmolyte accumulation and stress protein synthesis. J Plant Physiol 154:240–249 [CrossRef]
    [Google Scholar]
  9. Goto-Seki A., Shirokane M., Masuda S., Tanaka K., Takahashi H. 1999; Specificity crosstalk among group 1 and group 2 sigma factors in the cyanobacterium Synechococcus sp. PCC7942: in vitro specificity and a phylogenetic analysis. Mol Microbiol 34:473–484 [CrossRef]
    [Google Scholar]
  10. Gross C. A. 1996; Function and regulation of heat shock proteins. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. vol. I pp. 1382–1399Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Gruber T. M., Bryant D. A. 1997; Molecular systematic studies of eubacteria, using σ70-type sigma factors of group 1 and group 2. J Bacteriol 179:1734–1747
    [Google Scholar]
  12. Gruber T. M., Bryant D. A. 1998; Characterization of the alternative σ-factors SigD and SigE in Synechococcus sp. strain PCC 7002. SigE is implicated in transcription of post-exponential-phase-specific genes. Arch Microbiol 169:211–219 [CrossRef]
    [Google Scholar]
  13. Hagemann M., Zuther E. 1992; Selection and characterization of mutants of the cyanobacterium Synechocystis sp. PCC 6803 unable to tolerate high salt concentrations. Arch Microbiol 158:429–434
    [Google Scholar]
  14. Hagemann M., Techel D., Rensing L. 1991; Comparison of salt- and heat-induced alterations of protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 155:587–592 [CrossRef]
    [Google Scholar]
  15. Hagemann M., Schoor A., Erdmann N. 1996; NaCl acts as a direct modulator in the salt adaptive response: salt-dependent activation of glucosylglycerol synthesis in vivo and in vitro. J Plant Physiol 149:746–752 [CrossRef]
    [Google Scholar]
  16. Hagemann M., Schoor A., Jeanjean R., Zuther E., Joset F. 1997; The gene stpA from Synechocystis sp. strain PCC 6803 encodes the glucosylglycerol-phosphate phosphatase involved in cyanobacterial salt adaptation. J Bacteriol 179:1727–1733
    [Google Scholar]
  17. Hecker M., Schumann W., Völker U. 1996; Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428 [CrossRef]
    [Google Scholar]
  18. Hengge-Aronis R. 1996; Back to log phase: σs as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21:887–893 [CrossRef]
    [Google Scholar]
  19. Kaneko T., Sato S., Kotani H.21 other authors 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136 [CrossRef]
    [Google Scholar]
  20. Kato F., Hino T., Nakaji A., Tanaka M., Koyama Y. 1995; Carotenoid synthesis in Streptomyces setonii ISP5395 is induced by the gene crtS, whose product is similar to a sigma factor. Mol Gen Genet 247:387–390 [CrossRef]
    [Google Scholar]
  21. Kratz W. A., Myers J. 1955; Nutrition and growth of several blue-green algae. Am J Bot 42:282–287 [CrossRef]
    [Google Scholar]
  22. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  23. Martin D. W., Holloway B. W., Deretic V. 1993; Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 175:1153–1164
    [Google Scholar]
  24. Missiakas D., Raina S. 1998; The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066 [CrossRef]
    [Google Scholar]
  25. Potuckova L., Kelemen G. H., Findlay K. C., Lonetto M. A., Buttner M. J., Kormanec J. 1995; A new RNA polymerase sigma factor, sigma F, is required for the late stages of morphological differentiation in Streptomyces spp. Mol Microbiol 17:37–48 [CrossRef]
    [Google Scholar]
  26. Reed R. H., Stewart W. D. P. 1985; Osmotic adjustment and organic solute accumulation in unicellular cyanobacteria from freshwater and marine habitats. Mar Biol 88:1–9
    [Google Scholar]
  27. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61 [CrossRef]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sauer J., Görl M., Forchhammer K. 1999; Nitrogen starvation in Synechococcus PCC 7942: involvement of glutamine synthetase and NtcA in phycobiliprotein degradation and survival. Arch Microbiol 172:247–255 [CrossRef]
    [Google Scholar]
  30. Sigalat C., de Kouchkovsky Y. 1975; Fractionnement et caractérisation de l’appareil photosynthétique de l’algue bleue unicellulaire Anacystis nidulans. Physiol Veg 13:243–258
    [Google Scholar]
  31. Tsinomeras N. F., Ishiura M., Kondo T., Anderson C. R., Tanaka K., Takahashi H., Johnson C. H., Golden S. S. 1996; A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria. EMBO J 15:2488–2495
    [Google Scholar]
  32. Van Hove B., Staudenmaier H., Braun V. 1990; Novel two-component transmembrane transcription control: regulation of iron dicitrate transport in Escherichia coli K-12. J Bacteriol 172:6749–6758
    [Google Scholar]
  33. Völker U., Dufour A., Haldenwang W. G. 1995; The Bacillus subtilis rsbU gene product is necessary for RsbX-dependent regulation of sigma B. J Bacteriol 177:114–122
    [Google Scholar]
  34. Webb R., Sherman L. A. 1994; The cyanobacterial heat-shock response and the molecular chaperones. In Molecular Biology of Cyanobacteria pp. 581–611Edited by Bryant D. A. Dordrecht: Kluwer;
    [Google Scholar]
  35. Wösten M. M. S. M. 1998; Eubacterial sigma-factors. FEMS Microbiol Rev 22:127–150 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2877
Loading
/content/journal/micro/10.1099/00221287-146-11-2877
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error