1887

Abstract

A region of 14-2 kb has been analysed that is a part of a locus on the AM1 chromosome containing a number of genes involved in one-carbon (C) metabolism, including serine cycle genes, genes, regulatory methanol oxidation genes and the gene for N5,N10-methylene tetrahydrofolate dehydrogenase (). Fifteen new ORFs have been identified within the new region, and their sequences suggest that they encode the following polypeptides: the C-terminal part of phosphoenolpyruvate carboxylase, malyl-CoA lyase, polypeptides of 9.4 and 31 kDa of unknown function, three putative subunits of an ABC-type transporter, two polypeptides similar to the products of and from AM1 and other methylotrophs, a cytochrome three enzymes of folate metabolism, and polypeptides of 13 and 20.5 kDa with no homologues in the protein database. Ten insertion mutations have been generated in the region to determine if the newly identified genes are associated with C metabolism. A mutation in encoding malyl-CoA lyase, resulted in a C-minus phenotype, while mutations in the other genes all showed a C-plus phenotype. It was not possible to obtain null mutants in a putative folate metabolism gene, implying the necessity of these folate synthesis genes for metabolism of C and multicarbon compounds. Mutations in the putative ABC transporter genes, the genes similar to and and other unidentified ORFs produced double-crossover recombinants with a C-positive phenotype. Promoter regions have been investigated upstream of and using the promoter probe vector pHX200. Transcription from these promoters was weak in wild-type AM1 but increased in regulatory mutants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1729
1997-05-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1729.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1729&mimeType=html&fmt=ahah

References

  1. Anderson D., Morris C. J., Nunn D. N., Anthony C., Lidstrom M. E. 1990; Nucleotide sequence of the Methylobacterium extorquens AM1 moxF and mox J genes involved in methanol oxidation. Gene 90:173–176
    [Google Scholar]
  2. Angerer A., Gaisser S., Braun V. 1990; Nucleotide seqence of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggest a periplasmic-binding-protein-dependent iron transport mechanism. J Bacteriol 172:572–578
    [Google Scholar]
  3. Anthony C. 1982; The Biochemistry of Methylotrophs. London : Academic Press..
    [Google Scholar]
  4. Anthony C., Zatman L. 1964; The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M27. Biochem J 92:614–621
    [Google Scholar]
  5. Arps P. J., Fulton G. F., Minnich E. C., Lidstrom M. E. 1993; Genetics of serine pathway enzymes in Methylobacterium extorquens AM1 : phosphoenolpyruvate carboxylase and malyl coenzyme A lyase. J Bacteriol 175:3776–3783
    [Google Scholar]
  6. Bott M., Dimroth P. 1994; Klebsiella pneumoniae genes for citrate lyase and citrate ligase : localization, sequencing, and expression. Mol Microbiol 14:347–356
    [Google Scholar]
  7. Chistoserdova L. 1996; Metabolism of formaldehyde in M . extorquens AM1. Molecular genetic analysis and mutant characterization.In Microbial Growth on C1 Compounds, Edited by M. E. Lidstrom & F. R. Tabita. Dordrecht: Kluwer Academic Publishers.. pp:16–24
    [Google Scholar]
  8. Chistoserdova L., Lidstrom M. E. 1991; Purification and characterization of hydroxypyruvate reductase from the facultative methylotroph Methylobacterium extorquens AM1. J Bacteriol 173:7228–7232
    [Google Scholar]
  9. Chistoserdova L., Lidstrom M. E. 1992; Cloning, mutagenesis, and physiological effect of a hydroxypyruvate reductase gene from Methylobacterium extorquens AM1. J Bacteriol 174:71–77
    [Google Scholar]
  10. Chistoserdova L., Lidstrom M. E. 1996; Molecular characterization of a chromosomal region involved in the oxidation of acetyl-CoA to glyoxylate in the isocitrate-lyase-negative methylotroph Methylobacterium extorquens AM1. Microbiology 142:1459–1468
    [Google Scholar]
  11. Chistoserdov A. Y., Chistoserdova L.V, Mclntire W. S., Lidstrom M. E. 1994; Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1 : complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176:4052–4065
    [Google Scholar]
  12. Dallas W. S., Dev I. K., Ray P. H. 1993; The dihydropteroate synthase gene, folP, is near the leucine tRNA gene, leuU , on the Escherichia coli chromosome. J Bacteriol 175:7743–7744
    [Google Scholar]
  13. Daniels D. L., Plunket G. III, Burland V. D., Blattner F. R. 1992; Analysis of the Escherichia coli genome - DNA sequence of the region from 84⋅5 to 86⋅5 minutes. Science 257:771–778
    [Google Scholar]
  14. Day D., Nunn D. N., Anthony C. 1990; Characterization of novel soluble c-type cytochrome in a moxD mutant of Methylobacterium extorquens AM1. J Gen Microbiol 136:181–188
    [Google Scholar]
  15. Ditta G., Schmidhauser T., Yakobson F., Lu P., Liang X., Finlay D., Guiney D., Helinski D. 1985; Plasmids related to the broad host range vector, pRK290, useful for gene cloning and monitoring gene expression. Plasmid 13:149–153
    [Google Scholar]
  16. Dunstan P. M., Anthony C., Drabble W. T. 1972; Microbial metabolism of C1 and C2 compounds. The role of glyoxylate, glycollate and acetate in the growth of Pseudomonas AM1 on ethanol and on C1 compounds. Biochem J 128:107–115
    [Google Scholar]
  17. Eady R. R., Large P. J. 1968; Purification and properties of amine dehydrogenase from Pseudomonas AM1 and its role in growth on methylamine. Biochem J 106:245–255
    [Google Scholar]
  18. Fleischmann R. D., Adams M. D., White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–498
    [Google Scholar]
  19. Frantz B., Chakrabarty A.M. 1987; Organization and nucleotide sequence determination of a gene cluster involved in 3- chlorocatechol degradation. Proc Natl Acad Sci USA 84:4460–4464
    [Google Scholar]
  20. Frantz B., Ngai K.-L., Chatterjee D. K., Ornston L. N., Chakrabarty A.M. 1987; Nucleotide sequence and expression of clcD, a plasmid-borne dienolactone hydrolase gene from Pseudomonas sp. strain B13. J Bacteriol 169:704–709
    [Google Scholar]
  21. Goodwin P. M. 1990; Assay of assimilatory enzymes in crude extracts of serine pathway methylotrophs. Methods Enzymol 188:361–365
    [Google Scholar]
  22. Hacking A. J., Quayle J. R. 1974; Purification and properties of malyl-coenzyme A lyase from Pseudomonas AM1. Biochem J 139:399–405
    [Google Scholar]
  23. Harder W., Attwood M., Quayle J. R. 1973; Methanol assimilation by Hyphomicrobium spp. J Gen Microbiol 78:155–163
    [Google Scholar]
  24. Harms N., de Vries G. E., Maurer K., Hoogendijk J., Stouthamer A. H. 1987; Isolation and nucleotide sequence of the methanol dehydrogenase structural gene from Paracoccus denitrificans. J Bacteriol 169:3969–3975
    [Google Scholar]
  25. Harms N., Ras J., Koning S., Reijnders W. N. M., Stouthamer A.H., van Spanning R. J. M. 1996; Genetics of C1 metabolism regulation in Paracoccus denitrificans. In Microbial Growth on C1 Compounds, . Edited by M. E. Lidstrom & F. R. Tabita. Dordrecht : Kluwer Academic Publishers. pp:126–132
    [Google Scholar]
  26. Hudspeth R. L., Grula J.W. 1989; Structure and expression of the maize gene encoding the phosphoenolpyruvate carboxylase isozyme involved in C4photosynthesis. Plant Mol Biol 12:579–589
    [Google Scholar]
  27. Inoue T., Sanagawa M., Mori A., Imai C., Fukuda M., Takagi M., Yano K. 1989; Cloning and sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti. J Bacteriol 171:3115–3122
    [Google Scholar]
  28. Kalb V. F., Bernlohr R. W. 1977; A new spectrophotometric assay for protein in cell extracts. Anal Biochem 82:362–371
    [Google Scholar]
  29. Kataeva I. A., Golovleva L. A. 1990; Catechol 2,3-dioxygenase from Pseudomonas aeruginosa 2x. Methods Enzymol 188:115–121
    [Google Scholar]
  30. Katagiri F., Kidaki T., Fujita N., Izui K., Katsuki H. 1985; Nucleotide sequence of the phosphoenolpyruvate carboxylase gene of the cyanobacterium Anacystis nidulans. Gene 38:265–269
    [Google Scholar]
  31. Klein P., Kanehisa M., DeLisi C. 1985; The detection and classification of membrane-spanning proteins. Biochim Biophys Acta 815:468–476
    [Google Scholar]
  32. Kobayashi T., Kudo I., Karasawa K., Mizushima H., Inoue K., Nojima S. 1985; Nucleotide sequence of the pldB gene and characteristics of deduced amino acid sequence of lysophospholipase L2 in Escherichia coli. J Biochem 98:1017–1025
    [Google Scholar]
  33. Lacks S.A., Greenberg B., Lopez P. 1995; A cluster of four genes encoding enzymes for five steps in the folate biosynthetic pathway of Streptococcus pneumoniae. J Bacteriol 177:66–74
    [Google Scholar]
  34. Large P. J., Quayle J. R. 1962; Microbial growth on C1 compounds. 5. Enzyme activities in extracts of Pseudomonas AM1. Biochem J 87:386–396
    [Google Scholar]
  35. Lidstrom M. E., Anthony C., Biville F., Gasser F., Goodwin P., Hanson R. S., Harms N. 1994; New unified nomenclature for genes involved in the oxidation of methanol in Gram-negative bacteria. FEMS Microbiol Lett 117:103–106
    [Google Scholar]
  36. Maniatis T., Fritsch E. F., Sambrook J. 1982; Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  37. Meinkoth J., Wahl G. 1984; Hybridization of nucleic acids immobilized on solid supports. Anal Biochem 138:267–284
    [Google Scholar]
  38. Nunn D. N., Lidstrom M. E. 1986a; Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AM1. J Bacteriol 166:581–590
    [Google Scholar]
  39. Nunn D. N., Lidstrom M. E. 1986a; Phenotypic characterization of 10 methanol oxidation mutant classes in Methylobacterium sp. strain AM1. J Bacteriol 166:591–598
    [Google Scholar]
  40. Omata T., Andriesse X., Hirano A. 1993; Identification and characterization of a gene cluster involved in nitrate transport in the cyanobacterium Synechococcus sp. PCC7942. Mol Gen Genet 236:193–202
    [Google Scholar]
  41. Peel D., Quayle J.R. 1961; Microbial growth on C1 compounds : isolation and characterization of Pseudomonas AM1. Biochem J 81:465–469
    [Google Scholar]
  42. Rao J. K. M., Argos P. 1986; A conformational preference parameter to predict helices in integral membrane proteins. Biochim Biophys Acta 869:197–214
    [Google Scholar]
  43. Ras J., Reijnders W. N. M., van Spanning R. J. M., Harms N., Oltmann L. F., Stouthamer A. H. 1991; Isolation, sequencing and mutagenesis of the gene encoding cytochrome c5531 of Paracoccus denitrificans and characterization of the mutant strain. J Bacteriol 173:6971–6979
    [Google Scholar]
  44. Ras J., Van Ophem P. W., Reijnders W. N. M., van Spanning R. J. M., Duine J.A., Stouthamer A. H., Harms N. 1995; Isolation, sequencing and mutagenesis of the gene encoding NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GDFALDH is essential for methylotrophic growth. J Bacteriol 177:247–251
    [Google Scholar]
  45. Saier M. H. Jr 1994; Computer-aided analyses of transport protein sequences : gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58:71–93
    [Google Scholar]
  46. Saito H., Miura K.-I. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochem Biophys Acta 72:619–629
    [Google Scholar]
  47. Shaw W. V. 1975; Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 43:737–755
    [Google Scholar]
  48. Simon R., Priefer U., Puhler A. 1983; Vector plasmids for in vivo manipulations of Gram-negative bacteria. In Molecular Genetics ofthe Bacteria-Plant Interactions,. Edited by A. Puhler. Berlin: Springer. pp:98–106
    [Google Scholar]
  49. van Spanning R. J. M., Wansell C. W., De Boer T., Hazelaar M.J., Anazawa H., Harms N., Oltmann L.F., Stouthamer A.H. 1991; Isolation and characterization of the moxJ, moxG, moxI, and moxR genes of Paracoccus denitrificans : inactivation of moxJ, moxG, and moxR and the resultant effect on methylotrophic growth. J Bacteriol 173:6948–6961
    [Google Scholar]
  50. Springer A. L., Chou H.-H., Fan W.-H., Lee E., Lidstrom M. E. 1995; Methanol oxidation mutants in Methylobacterium extorquens AM1 : identification of new genetic complementation groups. Microbiology 141:2985–2993
    [Google Scholar]
  51. Talarico T. L., Ray P. H., Dev I. K., Merrill B. M., Dallas W. S. 1992; Cloning, sequence analysis, and overexpression of Escherichia coli folK, the gene coding for 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase. J Bacteriol 174:5971–5977
    [Google Scholar]
  52. Tamaki T., Fukaya M., Takemura H., Tayama K., Okumura H., Kawamura Y., Nishiyama M., Horinouchi S., Beppu T. 1981; Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes. . Biochem Biophys Acta 1088:292–300
    [Google Scholar]
  53. Toyama H., Chistoserdova L., Lidstrom M. E. 1997; Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate. Microbiology 143:595–602
    [Google Scholar]
  54. Tsuji K., Tsien H.C., Hanson R. S., DePalma S. R., Scholtz R., LaROChe S. 1990; 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J Gen Microbiol 136:1–10
    [Google Scholar]
  55. Whitaker J. R., Granum P.E. 1980; An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal Biochem 109:156–159
    [Google Scholar]
  56. Xu H. H., Viebahn M., Hanson R.S. 1993; Identification of methanol-regulated promoter sequences from the facultative methylotrophic bacterium Methylobacterium organophilum XX. J Gen Microbiol 139:743–752
    [Google Scholar]
  57. Zimmer W., Hundeshagen B. 1994; Identification and sequencing of pyrG, the CTP synthetase gene of Azospirillum brasilense Sp7. FEMS Microbiol Lett 115:273–278
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-5-1729
Loading
/content/journal/micro/10.1099/00221287-143-5-1729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error