1887

Abstract

-dominant negative mutants of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev inhibit the function of wild-type Rev in a dose-dependent manner. This was previously shown to be caused by nuclear retention of the wild-type protein. In the present work, further analysis of the -dominant negative effect was performed using cotransfection experiments with different constructs encoding HIV-1 Rev and viral structural proteins together with a plasmid encoding a -dominant negative Rev mutant. Thus, one species of pre-mRNA was transcribed from the reporter plasmids. This pre-mRNA was then either spliced or exported by Rev as unspliced RNA for translation of the HIV structural proteins. An immunofluorescence assay and Western blot analysis were used for analysis of protein expression. hybridization was applied for labelling of unspliced mRNA in transfected cells, and RNase protection analysis was used to determine the relative amount of unspliced versus spliced mRNAs. The experiments confirmed that the -dominant negative mutant inhibited nuclear export of unspliced mRNA. It was, in addition, demonstrated for the first time that the -dominant negative mutant also affected a Rev-dependent regulatory step connected with viral pre-mRNA splicing. As a consequence, proteins expressed from unspliced and singly spliced HIV mRNAs decreased while there was an increase in protein products encoded by spliced and alternatively spliced mRNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-8-1965
1999-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/8/0801965a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-8-1965&mimeType=html&fmt=ahah

References

  1. Åkerblom L., Hinkula J., Broliden P. A., Makitalo B., Fridberger T., Rosen J., Villacres-Eriksson M., Morein B., Wahren B. 1990; Neutralizing cross-reactive and non-neutralizing monoclonal antibodies to HIV-1 gp120. AIDS 4:953–960
    [Google Scholar]
  2. Arrigo S. J., Chen I. S. Y. 1991; Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr and env/vpu 2 RNAs. Genes & Development 5:808–819
    [Google Scholar]
  3. Benko D. M., Schwartz S., Pavlakis G. N., Felber B. K. 1990; A novel human immunodeficiency virus type 1 protein, Tev, shares sequences with Tat. Env, and Rev proteins. Journal of Virology 64:2505–2518
    [Google Scholar]
  4. Bøe S. O., Bjørndal B., Røsok B., Szilvay A. M., Kalland K.-H. 1998; Sub-cellular localization of human immunodeficiency virus type 1 RNAs, Rev and the splicing factor SC-35. Virology 244:473–482
    [Google Scholar]
  5. Bogerd H., Greene W. C. 1993; Dominant negative mutants of human T-cell leukemia virus type 1 Rex and human immunodeficiency virus type 1 Rev fail to multimerize in vivo. Journal of Virology 67:2496–2502
    [Google Scholar]
  6. Bogerd H. P., Fridell R. A., Madore S., Cullen B. R. 1995; Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82:485–494
    [Google Scholar]
  7. Böhnlein E., Berger J., Hauber J. 1991; Functional mapping of the human immunodeficiency virus type 1 Rev RNA binding domain: new insights into the domain structure of Rev and Rex. Journal of Virology 65:7051–7055
    [Google Scholar]
  8. Chang D. D., Sharp P. A. 1989; Regulation by HIV Rev depends upon recognition of splice sites. Cell 59:789–795
    [Google Scholar]
  9. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  10. Cochrane A. W., Perkins A., Rosen C. A. 1990; Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. Journal of Virology 64:881–885
    [Google Scholar]
  11. Cochrane A. W., Jones K. S., Beidas S., Dillon P. J., Skalka A. M., Rosen C. A. 1991; Identification and characterization of intragenic sequences which repress human immunodeficiency virus structural gene expression. Journal of Virology 62:5305–5313
    [Google Scholar]
  12. Cullen B. R. 1992; Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiological Reviews 56:375–394
    [Google Scholar]
  13. Cullen B. R., Hauber J., Campbell K., Sodroski J. G., Haseltine W. A., Rosen C. A. 1988; Subcellular localization of the human immunodeficiency virus trans-acting art gene product. Journal of Virology 62:2498–2501
    [Google Scholar]
  14. D’Agostino D. M., Felber B. K., Harrison J. E., Pavlakis G. N. 1992; The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs. Molecular and Cellular Biology 12:1375–1386
    [Google Scholar]
  15. Dayton A. I., Terwilliger E. F., Potz J., Kowalski M., Sodroski J. G., Haseltine W. A. 1988; Cis-acting sequences responsive to the Rev gene product of the human immunodeficiency virus. Journal of AIDS 1:441–452
    [Google Scholar]
  16. Dayton E. T., Douglas M., Powell D., Dayton A. 1989; Functional analysis of CAR, the target sequence for the Rev protein of HIV-1. Science 246:1625–1629
    [Google Scholar]
  17. Emerman M., Vazeux R., Peden K. 1989; The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell 57:1155–1165
    [Google Scholar]
  18. Favaro J. P., Arrigo S. J. 1997; Characterization of Rev function using subgenomic and genomic constructs in T and COS cells. Virology 228:29–38
    [Google Scholar]
  19. Felber B. K., Hadzopoulou-Cladaras M., Cladaras C., Copeland T., Pavlakis G. N. 1989; Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proceedings of the National Academy of Sciences USA 86:1495–1499
    [Google Scholar]
  20. Fischer U., Meyer S., Teufel M., Heckel C., Lührmann R., Rautmann G. 1994; Evidence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA. EMBO Journal 13:4105–4112
    [Google Scholar]
  21. Fischer U., Huber J., Bolens W. C., Mattaj I. W., Luhrmann R. 1995; The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475–483
    [Google Scholar]
  22. Green M. R. 1993; Molecular mechanisms of Tat and Rev. AIDS Research Reviews 3:41–55
    [Google Scholar]
  23. Hammarskjöld M. L., Li H., Rekosh D., Prasad S. 1994; Human immunodeficiency virus env expression becomes Rev-independent if the env region is not defined as an intron. Journal of Virology 68:951–958
    [Google Scholar]
  24. Haseltine W. A. 1991; Regulation of HIV-1 replication. In Genetic Structure and Regulation of HIV-1 pp 1–42 Edited by Haseltine W. A., Wong-Staal F. New York: Raven Press;
    [Google Scholar]
  25. Hope T. J., Huang X., McDonald D., Parslow T. G. 1990; Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proceedings of the National Academy of Sciences, USA 87:7787–7791
    [Google Scholar]
  26. Hope T. J., Klein N. P., Elder M. E., Parslow T. G. 1992; Trans-dominant inhibition of human immunodeficiency virus type 1 Rev occurs through formation of inactive protein complexes. Journal of Virology 66:1849–1855
    [Google Scholar]
  27. Huang Y., Carmichael G. C. 1997; The mouse histone H2a gene contains a small element that facilitates cytoplasmic accumulation of intronless gene transcripts and of unspliced HIV-1 related mRNAs. Proceedings of the National Academy of Sciences, USA 94:10104–10109
    [Google Scholar]
  28. Huang Y., Wimler K. M., Carmichael G. C. 1999; Intronless mRNA transport elements may affect multiple steps of pre-mRNA processing. EMBO Journal 18:1642–1652
    [Google Scholar]
  29. Kalland K. H., Langhoff E., Bos H. J., Göttlinger H., Haseltine W. A. 1991; Rex-dependent nucleolar accumulation of HTLV-I mRNA. New Biologist 3:389–397
    [Google Scholar]
  30. Kalland K. H., Szilvay A. M., Brokstad K. A., Sætrevik W., Haukenes G. 1994a; The human immunodeficiency virus type 1 (HIV-1) Rev protein shuttles between the cytoplasm and nuclear compartments. Molecular and Cellular Biology 14:7436–7444
    [Google Scholar]
  31. Kalland K. H., Szilvay A. M., Langhoff E., Haukenes G. 1994b; Subcellular distribution of human immunodeficiency virus type 1 Rev and colocalization of Rev with RNA splicing factors in a speckled pattern in the nucleoplasm. Journal of Virology 68:1475–1485
    [Google Scholar]
  32. Kjems J., Sharp P. A. 1993; The basic domain of Rev from human immunodeficiency virus type 1 specifically blocks the entry of U4/U6.U5 small nuclear ribonucleoprotein in spliceosome assembly. Journal of Virology 67:4769–4776
    [Google Scholar]
  33. Kjems J., Frankel A. D., Sharp P. A. 1991a; Specific regulation of mRNA splicing in vitro by a peptide from HIV-1 Rev. Cell 67:169–178
    [Google Scholar]
  34. Kjems J., Brown M., Chang D. D., Sharp P. A. 1991b; Structural analysis of the interaction between the human immunodeficiency virus Rev protein and the Rev responsive element. Proceedings of the National Academy of Sciences, USA 88:683–687
    [Google Scholar]
  35. Kjems J., Calnan B. J., Frankel A. D., Sharp P. A. 1992; Specific binding of a basic peptide from HIV-1 Rev. EMBO Journal 11:1119–1129
    [Google Scholar]
  36. Lu X., Heimer J., Rekosh D., Hammarskjöld M. L. 1990; U1 small nuclear RNA plays a direct role in the formation of rev-regulated human immunodeficiency virus env mRNA that remains unspliced. Proceedings of the National Academy of Sciences, USA 87:7598–7602
    [Google Scholar]
  37. Madore S. J., Tiley L. S., Malim M. M., Cullen B. R. 1994; Sequence requirements for Rev multimerization in vivo. Virology 202:186–194
    [Google Scholar]
  38. Maldarelli F., Martin M. A., Strebel K. 1991; Identification of posttranscriptionally active inhibitory sequences in human immunodeficiency virus type 1 RNA: novel level of gene regulation. Journal of Virology 65:5732–5743
    [Google Scholar]
  39. Malim M. H., Cullen B. R. 1991; HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell 65:241–248
    [Google Scholar]
  40. Malim M. H., Cullen B. R. 1993; Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes. Molecular and Cellular Biology 13:6180–6189
    [Google Scholar]
  41. Malim M. H., Hauber J., Le S. Y., Maizel J. V., Cullen B. R. 1989a; The HIV-1 rev transactivator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338:254–257
    [Google Scholar]
  42. Malim M. H., Böhnlein S., Hauber J., Cullen B. R. 1989b; Functional dissection of the HIV-1 Rev transactivator – derivation of a trans-dominant repressor of Rev function. Cell 58:205–214
    [Google Scholar]
  43. Malim M. H., Tiley L. S., McCarn D. F., Rusche J. R., Hauber J., Cullen B. R. 1990; HIV-1 structural gene expression requires binding of the rev trans-activator to its RNA target sequence. Cell 60:675–683
    [Google Scholar]
  44. Malim M. H., McCarn D. F., Tiley L. S., Cullen B. R. 1991; Mutational definition of the human immunodeficiency virus type 1 rev activation domain. Journal of Virology 65:4248–4254
    [Google Scholar]
  45. Mermer B., Felber B. K., Campbell M., Pavlakis G. N. 1990; Identification of trans-dominant HIV-1 Rev protein mutants by direct transfer of bacterially produced proteins into human cells. Nucleic Acids Research 18:2037–2044
    [Google Scholar]
  46. Meyer B. E., Malim M. H. 1994; The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes & Development 8:1538–1547
    [Google Scholar]
  47. Misteli T., Caceres J. F., Spector D. L. 1997; The dynamics of a pre-mRNA splicing factor in living cells. Nature 387:523–527
    [Google Scholar]
  48. Nosaka T., Takamatsu T., Miyazaki Y., Sano K., Sato A., Kubota S., Sakurai M., Ariumi Y., Nakai M., Fujita S., Hatanaka M. 1993; Cytotoxic activity of Rev protein of human immunodeficiency virus type 1 by nucleolar dysfunction. Experimental Cell Research 209:89–102
    [Google Scholar]
  49. Olsen H. S., Cochrane A. W., Dillon P. J., Nalin C. M., Rosen C. A. 1990; Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. Genes & Development 4:1357–1364
    [Google Scholar]
  50. Ossareth-Nazari B., Bachelerie F., Dargemont C. 1997; Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278:141–144
    [Google Scholar]
  51. Richard N., Iacampo S., Cochrane A. 1994; HIV-1 Rev is capable of shuttling between the nucleus and cytoplasm. Virology 204:123–131
    [Google Scholar]
  52. Rosen C. A., Terwilliger E., Dayton A., Sodroski J., Haseltine W. A. 1988; Intragenic cis-acting art-gene-responsive sequences of the human immunodeficiency virus. Proceedings of the National Academy of Sciences USA 85:2071–2075
    [Google Scholar]
  53. Ruhl M., Himmelspach M., Bahr G. M., Hammerschmid F., Jaksche H., Wolff B., Aschauer H., Farrington G. K., Probst H., Bevec D., Hauber J. 1993; Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. Journal of Cell Biology 123:1309–1320
    [Google Scholar]
  54. Salfeld J., Gottlinger H. G., Sia R., Park R., Sodroski J. G., Haseltine W. A. 1990; A tripartite HIV-1 Tat–Env–Rev fusion protein. EMBO Journal 9:965–970
    [Google Scholar]
  55. Schwartz S., Felber B. K., Pavlakis G. N. 1992; Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein. Journal of Virology 66:150–159
    [Google Scholar]
  56. Sodroski J., Goh W. C., Rosen C. A., Dayton A., Terwilliger E., Haseltine W. A. 1986; A second post-transcriptional activator gene required for HTLV-III replication. Nature 321:412–417
    [Google Scholar]
  57. Solomin L., Felber B. K., Pavlakis G. N. 1990; Different sites of interaction for Rev, Tev, and Rex proteins within the Rev-responsive element of human immunodeficiency virus type 1. Journal of Virology 64:6010–6017
    [Google Scholar]
  58. Stauber R., Gaitanaris G. A., Pavlakis G. N. 1995; Analysis of trafficking and transdominant Rev proteins in living cells using green fluorescent protein fusions: transdominant Rev blocks the export of Rev from the nucleus to the cytoplasm. Virology 213:439–449
    [Google Scholar]
  59. Stauber R., Alfonina E., Gulnik S., Erickson J., Pavlakis G. N. 1998; Analysis of intracellular trafficking and interactions of cytoplasmic HIV-1 Rev mutants in living cells. Virology 251:38–48
    [Google Scholar]
  60. Stutz F., Rosbash M. 1994; A functional interaction between Rev and yeast pre-mRNA is related to splicing complex formation. EMBO Journal 13:4096–4104
    [Google Scholar]
  61. Sundquist V. A., Albert J., Ohlson E., Hinkula J., Fenyø E. M., Wahren B. 1989; Human immunodeficiency virus type 1 p24 production and antigenic variation in tissue culture of isolates with various growth characteristics. Journal of Medical Virology 29:170–175
    [Google Scholar]
  62. Szilvay A. M., Brokstad K. A., Kopperud R., Haukenes G., Kalland K. H. 1995; Nuclear export of the nucleocytoplasmatic shuttle protein HIV-1 Rev is mediated by its activation domain and is blocked by transdominant negative mutants. Journal of Virology 69:3315–3323
    [Google Scholar]
  63. Szilvay A. M., Brokstad K. A., Bøe S. O., Haukenes G., Kalland K. H. 1997; Oligomerization of HIV-1 Rev mutants in the cytoplasm and during nuclear import. Virology 235:73–81
    [Google Scholar]
  64. Thiriart C., Francotte M., Cohen J., Collignon C., Delers A., Kummert S., Molitor C., Gilles D., Roelants P., van Wijnendaele F. and others 1989; Several antigenic determinants exposed on the gp120 moiety of HIV-1 gp160 are hidden on the mature gp120. Journal of Immunology 143:1832–1836
    [Google Scholar]
  65. Venkatesh L. K., Chinnadurai G. 1990; Mutants in a conserved region near the carboxy-terminus of HIV-1 Rev identify functionally important residues and exhibit a dominant negative phenotype. Virology 178:327–330
    [Google Scholar]
  66. Wansink D. G., Schul W., van der Kraan I., van Steensel B., van Driel R., de Jong L. 1993; Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. Journal of Cell Biology 122:283–293
    [Google Scholar]
  67. Weichselbraun I., Farrington G. K., Rusche J. R., Böhnlein E., Hauber J. 1992; Definition of the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex protein activation domain by functional exchange. Journal of Virology 66:2583–2587
    [Google Scholar]
  68. Wolff B., Cohen G., Hauber J., Meshceryakova D., Rabeck C. 1995; Nucelocytoplasmic transport of the Rev protein of human immunodeficiency virus type 1 is dependent on the activation domain of the protein. Experimental Cell Research 217:31–41
    [Google Scholar]
  69. Zapp M. L., Hope T. J., Parslow T. G., Green M. R. 1991; Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. Proceedings of the National Academy of Sciences, USA 88:7734–7738
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-8-1965
Loading
/content/journal/jgv/10.1099/0022-1317-80-8-1965
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error