1887

Abstract

It is becoming apparent that many viruses employ more than one cell surface molecule for their attachment and cell entry. In this study, we have tested the role of integrin αβ3 and MHC class I molecules in the coxsackievirus A9 (CAV-9) infectious cycle. Binding experiments utilizing CHO cells transfected and expressing human integrin αβ3, revealed that CAV- 9 particles were able to bind to cells, but did not initiate a productive cell infection. Antibodies specific for integrin αβ3 molecules significantly reduced CAV-9 infection in susceptible cell lines. Moreover, MAbs specific for β- microglobulin (β-m) and MHC class I molecules completely inhibited CAV-9 infection. To assess the effect of these antibodies on virus binding, we analysed CAV-9 binding by flow cytometry in the presence of β-m- or integrin α β3-specific antibodies. The results showed a reduction in CAV-9 binding in the presence of integrin αβ3- specific antibodies while there was no reduction in the presence of β-m-specific MAb. Taken together, these data suggest that integrin αβ3 is required for CAV-9 attachment but is not sufficient for cell entry, while β-m, although not directly involved in CAV-9 binding, plays a post- attachment role in the CAV-9 infectious process, possibly being involved in virus entry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-10-2591
1999-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/10/0802591a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-10-2591&mimeType=html&fmt=ahah

References

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. 1989; The three dimensional structure of foot and mouth disease virus at 2·9 Å resolution. Nature 337:709–716
    [Google Scholar]
  2. Baxt B., Becker Y. 1990; The effect of peptides containing the arginine-glycine-aspartic acid sequence on the adsorption of foot and mouth disease virus to tissue culture cells. Virus Genes 4:73–83
    [Google Scholar]
  3. Bergelson J. M., Shepley M. P., Chan B. M. C., Hemler M. E., Finberg R. W. 1992; Identification of integrin VLA-2 as a receptor for echovirus 1. Science 255:1718–1720
    [Google Scholar]
  4. Bergelson J. M., St John N. F., Kawaguchi S., Chan M., Stubdal H., Modlin J., Finberg R. W. 1993; Infection by echoviruses 1 and 8 depends on the α2 subunit of human VLA-2. Journal of Virology 67:6847–6852
    [Google Scholar]
  5. Bergelson J. M., Chan M., Solomon K. R., St John N. F., Lin H., Finberg R. W. 1994; Decay-accelerating factor (CD55), a glycosylphosphatidyl-inositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proceedings of the National Academy of Sciences USA 91:6245–6249
    [Google Scholar]
  6. Bergelson J. M., Mohantry J. G., Crowell R. L., St John N. F., Lublin D. M., Finberg R. W. 1995; Coxsackievirus B3 adapted to growth on RD cells binds to decay-accelerating-factor (CD55. Journal of Virology 69:1903–1906
    [Google Scholar]
  7. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. 1997; Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323
    [Google Scholar]
  8. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. 1995; Antibodies to the vitronectin receptor (integrin αvβ3) inhibit binding and infection of foot and mouth disease virus to cultured cells. Journal of Virology 69:2664–2666
    [Google Scholar]
  9. Bhat S., Spitalnid S. L., Gonzales-Scarano F., Silberberg D. H. 1991; Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120. Proceedings of the National Academy of Sciences USA 88:7131–7134
    [Google Scholar]
  10. Bjorkman P. J., Saper M. A., Samraoui B., Bennet W. S., Strominger J. L., Wiley D. C. 1987; Structure of the human class I histocompatibility antigen, HLA-A2. Nature 309:506–512
    [Google Scholar]
  11. Chang K. H., Auvinen P., Hyypiä T., Stanway G. 1989; The nucleotide sequence of coxsackievirus A9: implications for receptor binding and enterovirus classification. Journal of General Virology 70:3269–3280
    [Google Scholar]
  12. Chang K. H., Day C., Walker J., Hyypiä T., Stanway G. 1992; The nucleotide sequences of wild- type coxsackievirus A9 strains imply that an RGD motif in VP1 is functionally significant. Journal of General Virology 73:621–626
    [Google Scholar]
  13. Cheresh D. A., Spiro R. C. 1987; Biosynthetic and functional properties of an ARG-GLY-ASP-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen and von Willebrand factor. Journal of Biological Chemistry 262:17703–17711
    [Google Scholar]
  14. Davies J., Warwick J., Totty N., Philp R., Helfrich M., Horton M. 1989; The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. Journal of Cell Biology 109:1817–1826
    [Google Scholar]
  15. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., DiMarzio P., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C., Schall T. J., Littman D. R., Landau N. R. 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666
    [Google Scholar]
  16. De Verdugo U. R., Selinka H.-C., Huber M., Kramer B., Kellermann J., Hofschneider P. H., Kandolf R. 1995; Characterization of a 100- kilodalton binding protein for the six serotypes of coxsackie B viruses. Journal of Virology 69:6751–6757
    [Google Scholar]
  17. Dragic T., Litwin V., Allaway G. P., Martin S. E., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P., Paxton W. A. 1996; HIV-1 entry into CD4 cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673
    [Google Scholar]
  18. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven transmembrane, G protein-coupled receptor. Science 272:872–877
    [Google Scholar]
  19. Fox G., Parry N. R., Barnett P. V., McGinn B., Rowlands D., Brown F. 1989; The cell attachment site on foot-and- mouth disease virus includes the amino acid sequence RGD (arginine- glycine-aspartic acid. Journal of General Virology 70:625–637
    [Google Scholar]
  20. Greve J. M., Davis G., Meyer A. M., Forte C. P., Yost S. C., Marlor C. W., Kamarck M. E., McClelland A. 1989; The major human rhinovirus receptor is ICAM-1. Cell 56:839–847
    [Google Scholar]
  21. Grist N. R., Reid D. 1988; General pathogenicity and epidemiology. In Coxsackieviruses, A General Update pp 221–239 Edited by Berdinelli M., Friedman H. New York: Plenum Press;
    [Google Scholar]
  22. Hong S. S., Karayan L., Tournier J., Curiel D. T., Boulanger P. A. 1997; Adenovirus type 5 fiber knob binds to MHC class I α2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO Journal 16:2294–2306
    [Google Scholar]
  23. Horton M. A., Lewis D., McNulty K., Pringle J. A. S., Chambers T. J. 1985; Monoclonal antibodies to osteoclastomas: definition of osteoclast specific cellular antigens. Cancer Research 45:5663–5669
    [Google Scholar]
  24. Hughes P. J., Horsnell C., Hyypiä T., Stanway G. 1995; The coxsackievirus A9 RGD motif is not essential for virus viability. Journal of Virology 69:8035–8040
    [Google Scholar]
  25. Hynes R. O. 1992; Integrins: versatility, modulation and signaling in cell adhesion. Cell 69:11–25
    [Google Scholar]
  26. Leippert M., Beck E., Weiland F., Pfaff E. 1997; Point mutations within the βG- βH loop of foot and mouth disease virus O1K affect virus attachment to target cells. Journal of Virology 71:1046–1051
    [Google Scholar]
  27. Logan D., Abu-Ghazaleh R., Blakemore W., Curry S., Jackson T., King A., Lea S., Lewis R., Newman J., Parry N., Rowlands D., Stuart D., Fry E. 1993; Structure of a major immunogenic site on foot and mouth disease virus. Natur e 362:566–568
    [Google Scholar]
  28. McKenna T. St C., Lubroth J., Rieder E., Baxt B., Mason P. W. 1995; Receptor binding site- deleted foot and mouth (FMD) virus protects cattle from FMD. Journal of Virology 69:5787–5790
    [Google Scholar]
  29. Madden D. R. 1995; The three dimensional structure of peptide–MHC complexes. Annual Reviews in Immunology 13:587–590
    [Google Scholar]
  30. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel G. 1986; The T4 gene encodes the AIDS virus receptor & is expressed in the immune system and the brain. Cell 47:333–348
    [Google Scholar]
  31. Mason P. W., Rieder E., Baxt B. 1994; RGD sequence of foot and mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement mechanism. Proceedings of the National Academy of Sciences, USA 91 1932-1936
    [Google Scholar]
  32. Mateu M. G., Valero M. L., Andreu D., Domingo E. 1996; Systematic replacement of amino acid residues within the Arg-Gly-Asp, containing loop of foot and mouth disease virus and effect on cell recognition. Journal of Biological Chemistry 271:12814–12819
    [Google Scholar]
  33. Neff S., Sa-Carvalho D., Rieder E., Mason P. W., Blystone S. D., Brown E. J., Baxt B. 1998; Foot and mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor. Journal of Virology 72:3587–3594
    [Google Scholar]
  34. Powell R. M., Schmitt V., Ward T., Goodfellow I., Evans D. J., Almond J. W. 1998; Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. Journal of General Virology 79:1707–1713
    [Google Scholar]
  35. Roivainen M., Hyypiä T., Piirainen L., Kalkkinen N., Stanway G., Hovi T. 1991; RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. Journal of Virology 65:4735–4740
    [Google Scholar]
  36. Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypiä T. 1994; Entry of Coxsackievirus A9 into host cells: specific interactions with α vβ3 integrin, the vitronectin receptor. Virology 203:357–365
    [Google Scholar]
  37. Roivainen M., Piirainen L., Hovi T. 1996; Efficient RGD independent entry of coxsackievirus A9. Archives of Virology 141:1909–1919
    [Google Scholar]
  38. Shaffren D. R., Bates R. C., Agrez M. V., Herd R. L., Burns G. F., Barry R. D. 1995; Coxsackievirus B1, B3 and B5 use decay accelerating factor as a receptor for cell attachment. Journal of Virology 69:3873–3877
    [Google Scholar]
  39. Shaffren D. R., Dorahy D. J., Ingham R. A., Burns G. F., Barry R. D. 1997a; Coxsackievirus A21 binds to decay-accelerating-factor but requires intracellular adhesion molecule 1 for cell entry. Journal of Virology 71:4736–4743
    [Google Scholar]
  40. Shaffren D. R., Dorahy D. J., Greive S. J., Burns G. F., Barry R. D. 1997b; Mouse cells expressing human intracellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21. Journal of Virology 71:785–789
    [Google Scholar]
  41. Shaffren D. R., Williams D. T., Barry R. D. 1997c; A decay accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus–adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells. Journal of Virology 71:9844–9448
    [Google Scholar]
  42. Stang E., Kartenbeck J., Parton R. G. 1997; Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Molecular Biology of the Cell 8:47–57
    [Google Scholar]
  43. Takagi J., Kamata T., Meredith J., Puzon-McLaughlin W., Takada Y. 1997; Changing ligand specificities of αvβ1 and αvβ3 integrins by swapping a short diverse sequence of the β subunit. Journal of Biological Chemistry 272:19794–19800
    [Google Scholar]
  44. Ward T., Pipkin P. A., Clarson N. A., Stone D. M., Minor P. D., Almond J. W. 1994; Decay accelerating factor (CD55) identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO Journal 13:5070–5074
    [Google Scholar]
  45. Ward T., Powell R. M., Pipkin P. J., Evans D. J., Minor P. D., Almond J. W. 1998; Role of α2 microglobulin in echovirus infection of rhabdomyosarcoma cells. Journal of Virology 72:5360–5365
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-10-2591
Loading
/content/journal/jgv/10.1099/0022-1317-80-10-2591
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error