Original Article
Schedule-Dependent Interaction between the Proteosome Inhibitor Bortezomib and the EGFR-TK Inhibitor Erlotinib in Human Non-small Cell Lung Cancer Cell Lines

https://doi.org/10.1097/JTO.0b013e3180f60bb3Get rights and content
Under an Elsevier user license
open archive

Introduction

Both erlotinib (E) and bortezomib (B) have shown single-agent activity in patients with non-small cell lung cancer. We studied the combination of these two novel biologic agents in vitro using a panel of non-small cell lung cancer cell lines.

Methods

The growth inhibitory effect of E and B were determined by MTT assay on seven non-small cell lung cancer cell lines. The data obtained from the growth inhibition assay in response to the combination of E and B were subject to isobologram analysis. The effects of each individual drug as well as combination in different sequences on cell cycle and apoptosis were determined by flow cytometry.

Results

Two of seven cell lines are sensitive to E. However, B has narrower range of cytotoxicity. The combination is neither synergistic nor additive in two of four cell lines tested. In H358 bronchoalveolar cell lines, the combination is more active than either agent alone. E causes G1 cell cycle arrest and B causes G2/M cell cycle arrest. In sequential studies, 24-hour previous exposure to E causes G1 arrest and abrogates the cytotoxic effect of B. This is observed in both E-sensitive as well as E-resistant cells and is accompanied by an increase in cell survival and a decrease in apoptosis.

Conclusions

The combination of E and B is neither additive nor synergistic in two of four cell lines tested. In H358 bronchoalveolar cell, the combination is more active than either agent alone. The schedule-dependent antagonistic effect of E pre-exposure was observed. E pre-exposure causes G1 cell cycle arrest and abrogates the activity of B. Further in vivo studies of this combination are warranted.

Cited by (0)

Disclosure: The authors declare no conflict of interest.