
Shape Optimization for
Covering Problems

Ernesto G. Birgin and Antoine Laurain
In his 1915 pioneering paper [Nev15], Neville describes
a game played at fairs where a large disk is painted on
a cloth and five smaller, identical circular disks of thin
metal are available. An award is offered to the person who
is able to completely cover the large disk with the small
disks. Neville then proceeds to show that the problem can
be modeled by a system of nonlinear equations, and dis-
cusses a numerical method for an approximation of the
solution. He also provides a figure for the covering of a
large disk with five small disks that looks identical to the
solution obtained with our algorithm shown in Figure 1.
Many other works followed that dealt with the problem
of covering a disk with smaller disks of minimum radius
or a convex body with smaller homothetic copies. In gen-
eral, planar geometry techniques are used in these works
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to, given a fixed and small number of disks, find the op-
timal radius or a bound for the optimal radius. See, for
example, [Kro93] and the references therein.

Figure 1. Covering of a disk of unit diameter with five identical
disks of minimum radius approximately 0.3023, obtained with
the method introduced in [BLMS21].

Nowadays, this type of problem is called a covering prob-
lem. The covering of the whole 𝑛-dimensional space with
minimally overlapping identical balls has often been in-
vestigated in parallel to the problem of packing nonover-
lapping spheres with the highest possible density [CS99].
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It is well-known that the optimal covering of the plane
is achieved by the hexagonal lattice, which realizes the
thinnest covering, i.e., the plane covering with the least pos-
sible density of disk intersection; see Figure 2.

Figure 2. In the left subfigure, the centers belong to a square
lattice, while in the right subfigure they belong to a hexagonal
lattice. The hexagonal lattice is visibly more efficient as it
leads to less overlapping between the disks.

The covering of a bounded set with overlapping identi-
cal balls minimizing the number of balls with a fixed ra-
dius, or minimizing their radius with a fixed number of
balls, as in Figure 3 in two dimensions, also represents a
challenging question with a wide variety of practical ap-
plications, ranging from the configuration of a gamma
ray machine radiotherapy equipment unit [LMZ09] to the
placement of base stations [DDNS06]. Compared to the
problem of covering the whole space, in which case the so-
lution is a lattice, covering a bounded set naturally yields a
less regular solution, as the covering depends on the shape
of the covered set. Numerical investigations hence play an
important role in studying such problems. The covering of
specific shapes such as squares, rectangles, disks, triangles,
and polygons with a fixed number 𝑚 of small disks has
naturally been the focus of various papers on this topic;
see for instance [HM97].

Figure 3. Region 𝐴, in green, to be covered by a union of disks
Ω(𝒙, 𝑟) (left) and Ω(𝒙, 𝑟) ∩ 𝐴, in gray (right).

Shape optimization approach. Even though various nu-
merical methods have been introduced to solve the cov-
ering problem, the natural approach of considering the
shape of the union of balls as the optimization variable has
been generally overlooked, except in a few specific cases,
see for instance [HLE03]. In this framework, the tools of
shape optimization and shape calculus are employed to inves-
tigate the sensitivity with respect to variations of the union
of balls, as the balls’ centers or radii are perturbed.

Shape optimization is the study of optimization prob-
lems where the variable is a geometric object, such as a
subset of R𝑛 or a manifold; see [SZ92]. The shape sensi-
tivity analysis is usually performed using strong regularity
conditions on the geometry, in order to parameterize the
perturbation of the geometry to compute derivatives. For
instance, one often works with sets of class 𝐶𝑘 with 𝑘 ≥ 2,
i.e., sets whose boundary can be locally represented by a
function of class 𝐶𝑘. Still, many relevant shape optimiza-
tion problems depend on mildly nonsmooth shapes such
as curvilinear polygons, which means that their boundary
is a union of smooth curves and it can have vertices. The
covering of a set 𝐴 may be naturally formulated as a non-
smooth shape optimization problem, since 𝐴may be non-
smooth, and the union of balls covering 𝐴 can be seen,
except for degenerate cases, as a curvilinear polygon, as
shown in Figure 4.

The shape optimization viewpoint on the covering
problems opens up new perspectives as the tools of shape
calculus become available, which allows us to numerically
handle the case of a large number 𝑚 of balls. We describe
now the approach that we have developed in [BLMS21]
and [BLMS22]. We focus here on a description in two di-
mensions for the sake of simplicity, but we emphasize that
the theoretical part of the shape optimization approach is
relatively independent of the dimension. Let 𝐴 be an open
bounded subset of R2 and Ω(𝒙, 𝑟) = ⋃𝑚

𝑖=1 𝐵(𝑥𝑖, 𝑟), where
𝒙 ≔ {𝑥𝑖}𝑚𝑖=1 and 𝐵(𝑥𝑖, 𝑟) is an open disk with center 𝑥𝑖 ∈ R2

and radius 𝑟. We consider the problem of covering 𝐴 us-
ing a fixed number 𝑚 of closed disks 𝐵(𝑥𝑖, 𝑟) with mini-
mal radius 𝑟, where 𝐴 denotes the closure of 𝐴. In other
words, we are looking for a vector (𝒙, 𝑟) ∈ R2𝑚+1 such that
𝐴 ⊂ Ω(𝒙, 𝑟) with minimal 𝑟. The optimization problem
can be formulated as

Minimize
(𝒙,𝑟)∈R2𝑚+1

𝑟 subject to 𝐺(𝒙, 𝑟) = 0, (1)

where

𝐺(𝒙, 𝑟) ≔ Area(𝐴 ⧵ Ω(𝒙, 𝑟)) (2)

and Area(𝐴 ⧵ Ω(𝒙, 𝑟)) denotes the two-dimensional mea-
sure of𝐴⧵Ω(𝒙, 𝑟). It can be shown that𝐺(𝒙, 𝑟) = 0 is equiv-
alent to 𝐴 ⊂ Ω(𝒙, 𝑟), thus a solution to problem (1) yields
a solution to the covering problem. Covering problems
are usually formulated with closed sets, but for the shape
optimization framework it is convenient to work with the
open sets 𝐴 and Ω(𝒙, 𝑟).

The function 𝐺 can be interpreted as the composition
of a so-called shape functional 𝐴 ⧵ Ω ↦ Area(𝐴 ⧵ Ω) with
a function (𝒙, 𝑟) ↦ 𝐴 ⧵ Ω(𝒙, 𝑟). Under some geometric
conditions detailed in [BLMS21] and [BLMS22], the deriv-
ative of such a function can be computed using techniques
of shape calculus and in particular via the concept of shape
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Ω(𝒙, 𝑟) Ω(𝒙 + 𝑡𝛿𝒙, 𝑟)
= 𝑇𝑡(Ω(𝒙, 𝑟))

𝑇𝑡

𝑇−1𝑡

Figure 4. A small perturbation of the disks’ centers modifies
the shape of the union Ω(𝒙, 𝑟). The corresponding shape
perturbation Ω(𝒙 + 𝑡𝛿𝒙, 𝑟) of Ω(𝒙, 𝑟) can be parameterized with
the help of a bi-Lipschitz transformation 𝑇𝑡.

derivative [SZ92]. Using these techniques, we proved in
[BLMS21] that the partial derivatives of 𝐺 with respect to
the centers 𝑥𝑖 and the radius 𝑟 are given by

𝜕𝑥𝑖𝐺(𝒙, 𝑟) = −∫
𝜕𝐵(𝑥𝑖,𝑟)∩𝜕Ω(𝒙,𝑟)∩𝐴

𝜈(𝑧) 𝑑𝑧, (3)

𝜕𝑟𝐺(𝒙, 𝑟) = ∫
𝜕Ω(𝒙,𝑟)∩𝐴

𝑑𝑧, (4)

where 𝜈 is the outward unit normal vector to Ω(𝒙, 𝑟). The
partial derivative 𝜕𝑥𝑖𝐺(𝒙, 𝑟) is a vector with two compo-
nents since 𝜈 is vector-valued.

Note that the formulas for the partial derivatives of 𝐺
are boundary integrals involving the unit normal vector 𝜈
to the boundary of Ω(𝒙, 𝑟). This illustrates a fundamental
property in shape optimization known as the structure the-
orem, which essentially states that the first derivative with
respect to the shape of a shape functional only depends on
the boundary perturbations in the normal direction. This
is a well-known property of the shape derivative which is
known since the pioneering work of Hadamard [Had68].

In order to prove these results, the main task is to build
a transformation 𝑇𝑡 between the union of disksΩ(𝒙, 𝑟) and
its perturbation Ω(𝒙 + 𝑡𝛿𝒙, 𝑟), where 𝛿𝒙 is a perturbation
of the disks’ centers. The transformation needs to be bi-
Lipschitz, which means that 𝑇𝑡 and its inverse are both Lip-
schitz functions, in order to perform a change of variables
in the integral onΩ(𝒙+𝑡𝛿𝒙, 𝑟) that appears in𝐺(𝒙+𝑡𝛿𝒙, 𝑟).
The small perturbation Ω(𝒙 + 𝑡𝛿𝒙, 𝑟) and the correspond-
ing mapping 𝑇𝑡 are illustrated in Figure 4. In the case of a
perturbation of the radii, one considers the setΩ(𝒙, 𝑟+𝑡𝛿𝑟)
and the procedure is similar.

In [BLMS22] we have also computed the second-order
partial derivatives 𝜕2𝑥𝑖,𝑥𝑗𝐺(𝒙, 𝑟), 𝜕2𝑥𝑖,𝑟𝐺(𝒙, 𝑟), 𝜕2𝑟,𝑟𝐺(𝒙, 𝑟).
Their expressions are more involved compared to (3),(4)
and we refer to [BLMS22] for their detailed description,
but their computation is based on similar shape calculus
techniques as for the calculation of (3),(4).

Numerical methods and illustrations. In [BLMS21], non-
polygonal sets 𝐴 were considered. We even supposed that
the set 𝐴was defined by an oracle that, given a point in the
plane, answers whether the point is inside 𝐴 or not. This
level of generality forced us to compute 𝐺 and its gradi-
ent approximately. (At that time we were not yet consid-
ering second derivatives.) For the calculation of 𝐺, which
can be written as an area integral, we simply partitioned
the plane into small squares and counted the area of the
squares whose center was at the same time in 𝐴 and in
the union of the disks; see [BLMS21, Alg. 4.1]. For the
calculation of the partial derivatives of 𝐺 in (3),(4), we
discretized 𝜕𝐵(𝑥𝑖, 𝑟) ∩ 𝜕Ω(𝒙, 𝑟) ∩ 𝐴 for 𝑖 = 1, . . . , 𝑚 and
𝜕Ω(𝒙, 𝑟) ∩ 𝐴, which basically consists of considering a fi-
nite number of points on the boundary of each disk and
of verifying, for each point, whether it lies within 𝐴 and
is not in the interior of any disk. With the points satisfy-
ing these conditions, we approximated the line integrals
using a quadrature rule; see [BLMS21, Alg. 4.2]. This ap-
proach allowed us to consider a large variety of sets 𝐴, but
resulted in time-consuming and relatively imprecise calcu-
lations that enabled us to find approximate solutions for
problems with up to 25 disks. Figure 5 illustrates some
solutions; see [BLMS21] for details. The highlight of the
pictures is that the sets 𝐴 are not polygons.

It should also be noted that the discrete calculation of𝐺
together with the minimization of the radius of the disks
produces solutions in which boundary spikes may remain
uncovered if the discretization is not sufficiently fine, as
can be seen in Figure 5. This is due to the fact that spikes
have a large perimeter and a small area, therefore their con-
tribution to 𝐺 is much smaller than the contribution of
the smoother regions of 𝐴, and a very fine discretization is
necessary to obtain a visually satisfying covering. Numeri-
cally, a domain 𝐷 containing 𝐴 and Ω(𝒙, 𝑟) is partitioned
into small squares, and the area of 𝐴 ∩ Ω(𝒙, 𝑟) is approxi-
mated by the sum of the areas of the squares whose centers
are both in 𝐴 and inΩ(𝒙, 𝑟). If 𝐴 has a thin spike, as in Fig-
ure 5, the squares have to be very small for any of them
to have their center inside the spike. A numerical study
showing how the covering improves when the size of the
small squares used in the discretization of 𝐺 decreases is
presented in [BLMS21].

In [BLMS22], using shape calculus techniques, we ob-
tained the formulas of the second-order partial derivatives
of 𝐺. Moreover, by limiting the numerical experiments to
sets 𝐴 that are the union of disjoint convex polygons, we
were able to calculate 𝐺, its gradient, and its Hessian ex-
actly, disregarding the machine precision. The main tool
for the calculation of 𝐺 and its derivatives was the calcu-
lation of Voronoi diagrams 𝒱(𝒙) ≔ {𝑉𝑖(𝒙)}

𝑚
𝑖=1, with the
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Figure 5. Heart covered by 15 radius-minimizing identical
disks with 𝑟 ≈ 0.3476 (left) and curved star covered by 9
radius-minimizing identical disks with 𝑟 ≈ 0.1300 (right).

Voronoi cells

𝑉𝑖(𝒙) ≔ {𝑥 ∈ R2 ∶ ‖𝑥 − 𝑥𝑖‖2 ≤ min
1≤𝑗≤𝑚

‖𝑥 − 𝑥𝑗‖2}

for 𝑖 = 1, . . . , 𝑚, where the generators 𝑥𝑖 are the disks’ cen-
ters. Voronoi cells 𝑉𝑖 are disjoint (possibly unbounded)
polyhedra which, intersected with the convex polygons
composing 𝐴, become disjoint convex polygons. In turn,
the intersection of each convex polygon with its corre-
sponding disk results in a convex plane figure, whose sides
are determined by segments and arcs of a circle, as in Fig-
ure 6. The area of each of these plane figures is easy to
calculate with basic concepts of plane geometry. This par-
tition of Ω(𝒙, 𝑟) ∩ 𝐴 as well as access to all vertices, edges,
and arcs that compose the partition is all we need to calcu-
late exactly not only 𝐺 but also its first- and second-order
derivatives; see [BLMS22, Algs. 4.1–4.3]. These tools, by
enabling the exact evaluation of 𝐺 and its first and sec-
ond derivatives, have allowed us to calculate very precise
solutions to problems with up to 100 disks in a fraction of
the time required by the method introduced in [BLMS21],
which uses costly approximations of 𝐺 and its gradient,
and does not use the second derivative of 𝐺. Figure 7 illus-
trates some solutions; see [BLMS22] for details. The high-
light of the pictures is that the corners of the regions are
“well covered” by the disks. The description of the tools
needed for the exact computation of 𝐺 and its derivatives
makes more or less clear that the choice to consider sets
𝐴 given by the union of disjoint convex polygons was an
arbitrary choice that simplifies the implementation of the
calculations. Other types of sets 𝐴 could be considered, as
long as one is willing to implement the required tools of
plane geometry.

So far we have not mentioned how the optimization
problems were solved. Problem (1) is a nonlinear pro-
gramming problem with a single hard-to-compute con-
straint. The familiar tool for solving problems of this type
is the augmented Lagrangian method; see [BM14]. In par-
ticular, we used Algencan [ABMS07] which is the imple-
mentation of an augmented Lagrangian method with safe-
guards. Very roughly speaking, an augmented Lagrangian

Figure 6. Voronoi diagram generated using the centers of the
disks as generating points that allows, by partitioning
Ω(𝒙, 𝑟) ∩ 𝐴, to calculate its area.

Figure 7. Minkowski island fractal (left) and eight-pointed star
(right) covered by 100 minimizing radius identical disks with
𝑟 ≈ 0.2753 and 𝑟 ≈ 0.2791, respectively.

method solves a sequence of subproblems in which the vi-
olation of shifted constraints is penalized. In the specific
case of the augmented Lagrangian method implemented
by Algencan, bound constraints are not penalized and re-
main in the subproblems. However, since problem (1)
has no bound constraints, the subproblems that Algencan
solves are unconstrained. In Algencan, leaving aside other
issues such as availability of a linear system solver and sub-
problem size, when the subproblems are unconstrained
and second derivatives of the functions defining the prob-
lem are available, the subproblems are solved with a glob-
ally convergent line search Newton’s method. For this rea-
son we can say that the work developed in [BLMS22] is
an application of a shape-Newton method in a genuinely
nonsmooth setting, a notable fact since Newton’s method
is rarely used in shape optimization, even in smooth set-
tings.

It should also be emphasized that we are actually seek-
ing a global solution of problem (1). There are no prac-
tical deterministic global optimization methods that are
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capable of dealing with problem (1). Thus, the stochas-
tic options remain and, among them, the most natural
is to use a multistart approach. This is precisely what we
did in [BLMS21] and [BLMS22], using randomly generated
starting points. In [BGL], based on hexagonal lattices, we
developed a way to generate better than random starting
points. With that, we managed to improve all the solu-
tions reported in [BLMS22] using fewer initial points and,
consequently, with lower computational cost.
Asymptotic analysis of the optimal radius. Following
the numerical approximation of solutions of covering
problems of bounded set, a theoretical question that natu-
rally arises is the asymptotic behavior and bounds on the
optimal radius, solution of problem (1), as the number
of disks grows to infinity. The possibility of running nu-
merical experiments with large 𝑚 allows us to verify the
sharpness of asymptotic estimates for the optimal radius
and to formulate new hypotheses for the bounds. This as-
ymptotic analysis creates a bridge between the problems of
covering the whole plane and covering a bounded set, as
the optimal arrangement for a given 𝑚 converges in some
appropriate sense toward the solution for the covering of
the whole plane, which is the hexagonal lattice

ℒ𝑟 ≔ {𝑘𝑣𝑟 + ℓ𝑤𝑟 | (𝑘, ℓ) ∈ ℤ2}

with 𝑣𝑟 ≔ 𝑟
2
(3,√3), 𝑤𝑟 ≔ 𝑟

2
(3, −√3). This convergence

toward a lattice can be observed numerically using a large
number of discs, as in the results in Figure 7. One observes
that the disks located farthest from the boundary tend to
align in a hexagonal lattice pattern, whereas the disks in-
tersecting the boundary display a more intricate and less
predictable behavior.

Kershner [Ker39] pioneered the topic in 1939, provid-
ing an asymptotic result on the smallest number of disks
of fixed radius that are necessary to cover an arbitrary re-
gion of the plane, a result that was improved ten years later
by Verblunksy [Ver49].

We have investigated a similar question recently in
[BGL] for the covering of a general class of sets. Using
honeycombs, defined as unions of 𝑚 regular hexagons
whose centers belong to a regular hexagonal lattice, we
have shown that the solution 𝑟∗(𝑚) to the minimization
problem (1) satisfies

𝑟∗(𝑚) = [2Area(𝐴)
3√3𝑚

]
1/2

+ 𝑅(𝑚) (5)

where

𝑅(𝑚) ≤ 𝑅(𝑚) ≤ 𝑅(𝑚), (6)

with the following asymptotic expansions, as 𝑚 goes to

infinity,

𝑅(𝑚) = −2Per(𝜕𝐴)
3√3𝑚

+ 𝑂 ( 1
𝑚3/2 ) ,

𝑅(𝑚) = 2Per(𝜕𝐴)
3√3𝑚

+ 𝑂 ( 1
𝑚3/2 ) ,

where Per(𝜕𝐴) denotes the perimeter of the boundary of
𝐴. We have then computed numerical solutions of cover-
ing problems with large𝑚 in order to verify the sharpness
of these asymptotic expansions. Numerically, we have ob-
served that the asymptotic order𝑚−1 of 𝑅(𝑚) is sharp, but
that the constant 2 Per(𝜕𝐴)/(3√3) could probably be im-
proved by a factor roughly equal to 0.2.

We also observed in all our numerical experiments that
the lower bound 𝑅(𝑚) is always positive, which suggests
that our asymptotic estimate for the lower bound is not
sharp. To improve the lower bound estimate, a finer study
of the behavior of the disks in the neighborhood of the
boundary of the optimal covering set Ω(𝒙∗(𝑚), 𝑟∗(𝑚)) will
have to be performed, as this behavior is the primary dri-
ver of the asymptotic expansions of the bounds 𝑅(𝑚) and
𝑅(𝑚).
Minimizing eigenvalues with respect to a union of disks.
So far we have discussed several features of the covering of
a bounded set with a union of𝑚 disks. This problem does
not involve the solution of a partial differential equation.
Many shape optimization problems actually involve the
solution of a partial differential equation, which usually
models a physical phenomenon. For instance, the opti-
mization of eigenvalues of differential operators with re-
spect to geometrical features is a topic of high interest in
pure and appliedmathematics but also in engineering and
natural sciences, such as in structural mechanics for the
control of vibration frequency, in mathematical biology,
acoustics or electromagnetism.

In particular, the optimization of Laplacian eigenval-
ues is a popular topic in mathematics as these problems
are often simple and elegant to formulate, but are also
challenging and require deep mathematical tools from a
large spectrum of disciplines such as partial differential
equations, spectral theory, and differential geometry. The
celebrated Rayleigh–Faber–Krahn inequality, conjectured
by Lord Rayleigh in the 19th century and proved several
decades later by Faber and Krahn, states that the ball min-
imizes the first Dirichlet eigenvalue under a volume con-
straint. Since then, many shape optimization problems of
this nature have been considered, such as the minimiza-
tion of the 𝑘th eigenvalue of the Dirichlet Laplacian for
𝑘 > 2, or the minimization of eigenvalues with other types
of partial differential equations and boundary conditions;
see [Hen06].

1588 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 10



Let Ω ⊂ R2 be a bounded open set and introduce the
function spaces

𝐻1(Ω) ≔ {𝑣 ∈ 𝐿2(Ω) | ∇𝑣 ∈ 𝐿2(Ω)},

𝐻1
0(Ω) ≔ {𝑣 ∈ 𝐻1(Ω) | 𝑣 = 0 on 𝜕Ω},

where 𝐿2(Ω) denotes the space of functions whose square
is integrable onΩ. The first Dirichlet Laplacian eigenvalue
is defined as

𝜆(Ω) ≔ min
ᵆ∈𝐻1

0(Ω)⧵{0}

∫
Ω
|∇𝑢|2

∫
Ω
𝑢2

.

The corresponding eigenfunction 𝑢 satisfies

−Δ𝑢 = 𝜆(Ω)𝑢 in Ω, (7)

𝑢 = 0 on 𝜕Ω, (8)

and we impose the normalization condition ‖𝑢‖𝐿2(Ω) = 1.
The name “Dirichlet” refers to the boundary condition (8).
We consider the following eigenvalue minimization prob-
lem:

Minimize 𝜆(𝒙)
with respect to 𝒙 ≔ {𝑥𝑖}𝑚𝑖=1 ∈ R2𝑚, (9)

where 𝜆(𝒙) ≔ 𝜆(Ω(𝒙)) denotes the solution to (7),(8) with
Ω = Ω(𝒙) ≔ ∪𝑚𝑖=1𝐵(𝑥𝑖, 𝑟), with 𝑚 and 𝑟 fixed, 𝑥𝑖 ∈ R2 for
all 𝑖 ∈ {1, … ,𝑚}.

The minimizers of problem (9) produce an interest-
ing geometrical configuration of the centers {𝑥𝑖}𝑚𝑖=1. First,
when 𝒙⋆ ≔ {𝑥⋆𝑖 }𝑚𝑖=1 is a solution of problem (9), Ω(𝒙⋆)
must be connected due to a monotonicity property of
Dirichlet eigenvalues. Second, Ω(𝒙⋆) achieves an equi-
librium between two competing tendencies. On the one
hand,Ω(𝒙⋆) strives to maximize its area, as the first Dirich-
let eigenvalue tends to decrease as the area of the domain
increases. On the other hand, Ω(𝒙⋆) seeks to minimize
the angles (measured from the interior of Ω(𝒙⋆)) at circle
intersections, and to prevent small gaps from appearing,
as these create strong singularities in the eigenfunction 𝑢
in the neighborhood of the circle intersections, which in-
crease the eigenvalue. Here, “singularities” roughly means
that ∇𝑢 is unbounded in these neighborhoods. Further-
more, considering that the minimizer of 𝜆 with respect
to a free-form shape under a volume constraint is a disk
due to the Rayleigh–Faber–Krahn inequality, one expects
the small disks 𝐵(𝑥⋆𝑖 , 𝑟) to agglomerate and approximate
a large disk as 𝑚 → ∞, and to minimize their overlap-
ping while avoiding gaps in Ω(𝒙⋆), i.e., Ω(𝒙⋆) should be
simply connected. Note that the minimizing of overlap-
ping is also characteristic of solutions of covering prob-
lems [BLMS21, BLMS22, CS99], as discussed in the previ-
ous sections.

In [BFHL23] we have developed an algorithm to find
approximate solutions of problem (9). The approach is
similar to the method described in the previous sections
for the covering problem. Here we can also compute the
derivative of the eigenvalue 𝜆(𝒙) with respect to 𝒙 using
techniques of shape calculus. We have shown that the par-
tial derivative of the eigenvalue is given by

𝜕𝑖𝜆(𝒙) = −∫
𝒜𝑖

|∇𝑢|2𝜈, (10)

where 𝒜𝑖 ≔ 𝜕𝐵(𝑥𝑖, 𝑟) ∩ 𝜕Ω(𝒙) for 𝑖 ∈ {1, … ,𝑚} and 𝜈 is the
outward unit normal vector to Ω(𝒙, 𝑟). Notice the similar-
ity between (10) and formula (3) which was obtained in
the case of the covering problem. This similarity is due to
the structure theorem of shape optimization that we have
discussed above. There is nevertheless an important differ-
ence between (10) and (3), as 𝜕𝑖𝜆(𝒙) depends on the gra-
dient of the eigenfunction ∇𝑢. Indeed, ∇𝑢 is unbounded
in the neighborhood of the circle intersections due to the
nonsmoothness and the concavity of the shape at these
points, and this makes the accurate numerical approxima-
tion of 𝜕𝑖𝜆(𝒙) challenging.

Figure 8 shows the results obtained by our algorithm
for 𝑟 = 1 and 𝑚 ≤ 10. We can clearly see how the shape of
Ω(𝒙⋆) converges to a disk as the number𝑚 of disks grows.
We also observe symmetries and regular patterns formed
by the disks’ centers at the solutions. However, the solu-
tions sometimes have less regularity and symmetries than
expected. For instance, in the case𝑚 = 4, the disks’ centers
have two symmetries, but they are the vertices of a rhom-
bus and not of a square. In the cases𝑚 = 6, 7, 8, the results
suggest that the exterior layer of disks should form a regu-
lar pentagon, hexagon, and heptagon, respectively. The
case 𝑚 = 5 is interesting as it only possesses one axis of
symmetry, and the pentagon formed by the disks’ centers
is not regular. The structure of the solution is also remark-
ably similar to the solution of the covering problem with
five disks shown in Figure 1. Starting from 𝑚 ≥ 9, regular
patterns are more difficult to observe as the shape ofΩ(𝒙⋆)
becomesmore complex due to the appearance of two disks
in the inner layer.

As in the covering problem, the asymptotic behavior
of Ω(𝒙∗(𝑚)) is an interesting theoretical question. As dis-
cussed in the previous sections, for the covering problem,
the disks’ centers converge in some sense toward the hexag-
onal lattice. For the eigenvalueminimization problem, nu-
merical results also suggest that the optimal placement of
the disks’ centers probably converges, in some appropri-
ate sense, toward a subset of the hexagonal lattice. This
conjecture is also supported by a simple argument: asymp-
totically, the hexagonal lattice configuration is a trade-off
between maximizing the total area of the union of balls,
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and keepingΩ(𝒙∗(𝑚)) simply connected, i.e., avoiding any
gaps in Ω(𝒙∗(𝑚)).

Figure 8. Numerical approximations of minimizers of the first
Dirichlet eigenvalue for 𝑚 = 2, 3, 4, 5, 6, 7, 8, 9, 10.

Conclusions and future research. Shape calculus and op-
timization are a powerful set of techniques for the sen-
sitivity analysis of functions depending on the geome-
try. There exists an extensive literature in the smooth set-
ting, but shape calculus still requires an active develop-
ment in the nonsmooth case. Nonsmooth shape opti-
mization has a variety of relevant applications such as the
modeling of evolving nonsmooth sets and the optimiza-
tion of complex geometries such as the union and inter-
section of moving components, curvilinear polygons, tes-
sellations, generalized Voronoi diagrams and minimiza-
tion diagrams [BLM23]. Applied to covering problems, it
provided a new perspective on the problem and allowed
us to design efficient numerical methods. Here we have
presented results with a union of balls of identical ra-
dius, but the shape optimization approach is versatile and
union/intersection of sets of various shapes can be treated
in a similar way, also in dimension greater than two.

Of particular interest is nonsmooth shape optimization
involving partial differential equations, as irregular geome-
tries appear naturally in applications. Both theoretical and
numerical challenges arise in this context, one of the main
issues being the singularities that appear in the corners of
the domain, which need to be carefully studied and han-
dled numerically. The eigenvalue problem presented in

this notice represents a first step in this direction, and other
nonsmooth shape optimization problems involving par-
tial differential equations will be investigated in the near
future.
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