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1. Introduction
We explain connections among several, a priori unrelated,
areas of mathematics: combinatorics, algebraic statistics,
topology, and enumerative algebraic geometry. Our focus
is on discrete invariants, strongly related to the theory of
Lorentzian polynomials. The main concept joining these
fields is a linear space of matrices.

The following questions arise prominently in different
branches of mathematics.

1. Given a graph 𝐺, how many proper vertex colorings
with 𝑘 colors exist?

2. What is the degree of a general linear concentration
model? What is its maximum likelihood degree?
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3. What is the Euler characteristic of a hypersurface de-
fined by the determinant of a matrix with linear en-
tries?

4. How many degree two hypersurfaces pass through 𝑎
general points and are tangent to 𝑏 general hyper-
planes?

We will start by explaining the meaning of the above ques-
tions. Our main aim is to show that the central objects we
encounter are in fact shadows of one construction and all
of the above questions are in fact one (or more precisely
two related) question(s). It turns out that the unifying set-
ting is surprisingly simple: we will always start from a lin-
ear space 𝐿 of square matrices. To such a space we canoni-
cally associate a polynomial with integral coefficients. This
is a special instance of the so-called volume polynomial
and an example of a Lorentzian polynomial. Roughly speak-
ing, the coefficients of this polynomial form the multide-
gree of the graph of the gradient of the determinant re-
stricted to 𝐿. We also present powerful, modern geometric
tools to study these basic invariants from a newperspective.
This will be achieved by performing intersection theory on
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smooth, projective, and beautiful varieties. We will work
over the field ℂ.

2. Main Players
Multidegree. For our purposes a variety 𝑉(𝑓1, … , 𝑓𝑛) is the
set of zeros of a polynomial system 𝑓𝑖 = 0. Given homo-
geneous polynomials on a vector space 𝑉 , it is natural to
consider their zero set as a subset of the projective space
ℙ(𝑉). The corresponding variety is called a projective vari-
ety [MS21, Chapters 1–3].

Example 2.1. Let 𝑓 = 𝑥𝑦 − 𝑧𝑡. We may regard 𝑉(𝑓) as a
two-dimensional quadratic surface in ℙ3.

The two most important invariants of a variety in a
projective space are its dimension and degree. One of
a few equivalent ways to define the degree of a variety
𝑋 ⊂ ℙ𝑛 is as the number of points one obtains after inter-
secting it with dim𝑋-many general hyperplanes. A variety
𝑋 is irreducible if, whenever it is a union of two varieties
𝑋 = 𝑋1 ∪ 𝑋2 then 𝑋 = 𝑋1 or 𝑋 = 𝑋2. To the projective
space ℙ𝑛 one associates a ring 𝐻∗(ℙ𝑛), which in this case
coincides with the Chow ring and the cohomology ring.
Elements of this ring are formal linear combinations of
classes of irreducible subvarieties of ℙ𝑛, called cohomol-
ogy classes. A variety is equivalent to a formal sum of its
irreducible components. Further, two, possibly reducible,
varieties are equivalent, if they have the same degree and
all components are of the same dimension. The multipli-
cation in 𝐻∗(ℙ𝑛) corresponds to intersection of varieties1.
Note that all hyperplanes define the same cohomology
class. In fact, the cohomology ring with rational coeffi-
cients of ℙ𝑛 is ℚ[𝐻]/(𝐻𝑛+1), where 𝐻 is the class of the hy-
perplane. Then the class of an irreducible variety 𝑋 equals
(deg𝑋)𝐻𝑛−dim𝑋 .

Example 2.2. Continuing the example of 𝑓 = 𝑥𝑦 − 𝑧𝑡,
one can check that 𝑉(𝑓) has degree two. In general, the
notion of the degree of a variety generalizes the notion of
the degree of a polynomial.

When 𝑋 is a subvariety of a product ℙ𝑛 × ℙ𝑚 of pro-
jective spaces, the analogue of the degree is the multide-
gree. Indeed, we have two different (families of) “hyper-
planes” in ℙ𝑛 × ℙ𝑚. Namely, the product 𝐻1 of a hy-
perplane in ℙ𝑛 with ℙ𝑚, and the product 𝐻2 of ℙ𝑛 with
a hyperplane in ℙ𝑚. Thus, instead of one number, we
obtain a sequence of (dim𝑋 + 1)-many numbers, by in-
tersecting 𝑋 with 𝑎 general hyperplanes of type 𝐻1 and
𝑏 general hyperplanes of type 𝐻2, where 𝑎 + 𝑏 = dim𝑋 .
Analogously to the previous case, the cohomology ring of
ℙ𝑛 × ℙ𝑚 is ℚ[𝐻1, 𝐻2]/(𝐻𝑛+1

1 , 𝐻𝑚+1
2 ). The multidegree of

an irreducible variety 𝑋 tells us the cohomology class of

1Assuming we choose representatives of classes that intersect in a nice way —
formally we have to assume they intersect transversally.

𝑋 . For more information about the multidegree we refer
to the book [MS05, Chapter 8].
Graphs. Let 𝐺 = (𝑉, 𝐸) be a loopless graph. A proper ver-
tex coloring using 𝑘 ∈ ℤ≥0 colors is a function 𝑓 ∶ 𝑉 →
{1. … , 𝑘}, such that whenever two vertices 𝑣1, 𝑣2 are con-
nected by an edge, we have 𝑓(𝑣1) ≠ 𝑓(𝑣2). The function
𝜒𝐺 ∶ ℤ≥0 → ℤ≥0 that to 𝑘 assigns the number of proper
vertex colorings using 𝑘 colors is known as the chromatic
polynomial of 𝐺. It is indeed a polynomial, as one may
prove by induction on the number of edges, by contract-
ing and deleting a given edge. The same proof shows that
𝜒𝐺 is a polynomial of degree |𝑉| with integral coefficients,
whose signs are alternating. If 𝐺 has at least one edge then
𝜒𝐺 has a root at one. We thus define the reduced chromatic
polynomial 𝜒𝐺(𝑘) ≔ 𝜒𝐺(𝑘)/(𝑘 − 1). From now on, for sim-
plicity, we will assume that 𝐺 is connected.

Example 2.3. Let 𝑃𝑛 be the path with 𝑛 vertices. Given 𝑘
colors we may assign to the first vertex any of the colors.
Then to each consecutive vertex we may assign (𝑘 − 1) col-
ors. We obtain:

𝜒𝑃𝑛(𝑘) = 𝑘(𝑘 − 1)𝑛−1

𝜒𝑃𝑛(𝑘) = 𝑘(𝑘 − 1)𝑛−2.
Let 𝐶3 be the 3-cycle, i.e., a triangle. If we remove one

edge, we obtain a path 𝑃3 with three vertices. A proper col-
oring of 𝑃3 is not a proper coloring of 𝐶3 if and only if the
two end vertices have the same color. Thus, there are ex-
actly 𝜒𝑃2(𝑘) = 𝑘(𝑘 − 1) such non-proper colorings. We
obtain:

𝜒𝐶3(𝑘) = 𝜒𝑃3(𝑘) − 𝜒𝑃2(𝑘) = 𝑘(𝑘 − 1)(𝑘 − 2)
𝜒𝐶3

(𝑘) = 𝑘(𝑘 − 2).
Example 2.4. Let 𝐶4 be the 4-cycle and let 𝑃4 be the path
obtained by removing one edge from 𝐶4. A proper color-
ing of 𝑃4 is not a proper coloring of 𝐶4 if and only if the
two end vertices have the same color. Thus, there are ex-
actly 𝜒𝐶3(𝑘) = 𝑘(𝑘 − 1)(𝑘 − 2) such colorings. We obtain:

𝜒𝐶4(𝑘) = 𝑘(𝑘 − 1) ((𝑘 − 1)2 − (𝑘 − 2)) =
𝑘(𝑘 − 1)(𝑘2 − 3𝑘 + 3)

𝜒𝐶4
(𝑘) = 𝑘3 − 3𝑘2 + 3𝑘.

Let 𝑛 ≔ |𝐸|. Below, we describe a classical construction
of associating to 𝐺 a subspace of ℂ𝑛, which is a special
case of a representation of a matroid. Let ℂ𝑛 be the vector
space with basis 𝑓𝑒 for 𝑒 ∈ 𝐸. We orient the edges of𝐺 in an
arbitrary way. Let 𝐿𝐺 be the subspace of ℂ𝑛 spanned by all
vectors𝑤𝑣 indexed by vertices 𝑣 ∈ 𝑉 , where the coordinate
of 𝑤𝑣 corresponding to the edge 𝑒 is given by:

𝑓∗𝑒 (𝑤𝑣) =
⎧
⎨
⎩

1 when 𝑒 = (𝑣, 𝑣′)
−1 when 𝑒 = (𝑣′, 𝑣)
0 otherwise.
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Example 2.5. When 𝐶4 is the oriented 4-cycle we see that
𝐿𝐺 is a codimension one subspace ofℂ4 given by the linear
equation: sum of coordinates equal to zero.

A magnificent connection of invariants of 𝐿𝐺 with
the chromatic polynomial 𝜒𝐺 was discovered by Huh
[Huh12]. This was a cornerstone to solutions of several
long-standing conjectures allowing applications of pow-
erful theorems from algebraic geometry to combinatorics.
We describe this connection below using a language differ-
ent from [Huh12], however better suited to exhibit connec-
tions with other topics. First, the ambient space ℂ𝑛 will be
identifiedwith the space𝑀𝐷

𝑛 of 𝑛×𝑛 diagonalmatrices. On
the projective (𝑛 − 1)-dimensional space ℙ(𝑀𝐷

𝑛 ) we have a
rational2 map:

𝐹 ∶ ℙ(𝑀𝐷
𝑛 ) 99K ℙ𝑛−1

given by the (nonzero) (𝑛−1)×(𝑛−1)minors. At this point
the reader should see that this is simply the classical Cre-
mona transformation that inverts coordinates. One could
also say this is the gradient of the determinant. We restrict
𝐹 to ℙ(𝐿𝐺) and look at the graph:

Γ𝐺 ≔ {(𝑥, 𝑦) ∈ ℙ(𝐿𝐺) × ℙ𝑛−1 ∶ 𝑦 = 𝐹(𝑥)}.
The dimension of Γ𝐺 is the dimension of ℙ(𝐿𝐺). For con-
nected graphs it simply equals the cardinality of the vertex
set minus two3. The multidegree turns out to be utterly
interesting!

Theorem 2.1 ([Huh12]). The multidegree sequence of Γ𝐺
equals the sequence of absolute values of coefficients of the re-
duced chromatic polynomial 𝜒𝐺.
Example 2.6. Continuing the example when 𝐶4 is the 4-
cycle we obtain the restriction of the map ℙ3 99K ℙ3:

(𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑡) ↦ (𝑦𝑧𝑡 ∶ 𝑥𝑧𝑡 ∶ 𝑥𝑦𝑡 ∶ 𝑥𝑦𝑧)
to ℙ2 ⊂ ℙ3 given by 𝑥 + 𝑦 + 𝑧 + 𝑡 = 0. The image of the re-
striction is the hypersurface defined by the degree three el-
ementary symmetric polynomial. This degree three is also
one entry of the multidegree; it is given by the product
[Γ𝐶4][𝐻2]2 = 3[𝑝𝑡] in the cohomology ring 𝐻∗(ℙ3 × ℙ3),
where [𝑝𝑡] is the class of a point. It also corresponds to
the lowest degree term 3𝑘 in 𝜒𝐶4 in Example 2.4. The com-
putation of the multidegree can be achieved, e.g., through
the Cremona package in Macaulay2 [GS93].

R=QQ[a,b,c,d], S=QQ[x,y,z,t]
f=map(S/ideal(x+y+z+t),R,
{y*z*t,x*z*t,x*y*t,x*y*z})
loadPackage”Cremona”
projectiveDegrees f
The output, consistent with Example 2.4, is:

o4 = {1,3,3}
2i.e., a map that is not defined everywhere
3Experts may recognize that this is in fact the rank of the matroid minus one.

Statistical models. We start with the following thought
experiment. We are given a coin with probability of heads
𝑝 and tails 1 − 𝑝. Say we know that 𝑝 was chosen from
the interval ( 1

3
, 2
3
). Such an assumption corresponds to

choosing a statistical model. How to find the value of 𝑝?
We could start throwing the coin many times. Say, after
throwing 1000 times we had 400 heads. Intuitively we esti-
mate 𝑝 = 0.4. A rigorous way is to compute the probabil-
ity of our experiment — i.e., 400 heads — as a function of
𝑝. This is referred to as the likelihood function, which is
𝐿(𝑝) ≔ 𝑝400(1−𝑝)600. The 𝑝we want to findmaximizes the
likelihood function. Indeed, it may be checked that 𝑝 = 0.4
is the correct one. This method is called maximum likeli-
hood estimation. In practice, one often maximizes the log-
likelihood function log 𝐿(𝑝). An efficient way is to check
when the derivative is equal to zero. In the described case:

𝑑(log 𝐿)
𝑑𝑝 = 200(2 − 5𝑝)

𝑝(1 − 𝑝)

equals zero precisely when 𝑝 = 0.4. For more complicated
statistical models we may get several critical values, one of
which is the desired maximum (assuming it is achieved).
The number of complex critical points is known as themax-
imum likelihood degree (ML-degree) and is one of the basic
algebraic measures of the complexity of the model [SU10].

Our main interest will be Gaussian models. As we will
soon see the degree and the ML-degree of linear multivari-
ate Gaussian models will be governed by the multidegree
of a graph of a map given by the gradient of the determi-
nant. The classical Gaussian distribution on ℝ has density
given by:

𝑓(𝑥) = 1
𝜎√2𝜋

𝑒−
1
2 (

𝑥−𝜇
𝜍 )

2

.

Here 𝜇 ∈ ℝ is the mean and 𝜎2 ∈ ℝ+ is the variance.
A slight generalization is a multivariate Gaussian distri-
bution, i.e., distribution on ℝ𝑛. In particular, the mean
𝜇 ∈ ℝ𝑛 is now a vector. How should we generalize the
variance? We note that the exponent in 𝑓(𝑥) is actually
an evaluation of a quadratic form on 𝑥 − 𝜇. In the one-
dimensional case we only had to choose one coefficient
for the quadratic form. For ℝ𝑛 the right generalization is
a positive-definite symmetric 𝑛×𝑛matrix Σ, known as the
covariance matrix. We obtain:

𝑓Σ,𝜇(𝑥) =

det(2𝜋Σ)−
1
2 exp (−12(𝐱 − 𝜇)𝖳Σ−1(𝐱 − 𝜇)) .

As Σ is positive-definite the function is integrable. The co-

efficient det(2𝜋Σ)−
1
2 in front of the exponential is chosen

so that the integral of 𝑓Σ,𝜇(𝑥) over ℝ𝑛 equals one. Thus
indeed we obtain a probability distribution.
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In the examples above, we were not specifying one prob-
ability distribution, but a set of those. This motivates the
following definition.

Definition 2.1. A statistical model is a family of probability
distributions.

Such a family often comes with an additional structure,
e.g., as a subset of ℝ𝑚. For the general multivariate Gauss-
ian model we would take 𝑚 = (𝑛+1

2
) + 𝑛 and identify the

probability distribution with a point (Σ, 𝜇) ∈ ℝ𝑚. Even
when dealing with Gaussian distributions we often make
further assumptions on Σ and 𝜇. First, we note that if we
have data that we believe come from a multivariate Gauss-
ian distribution, wemay estimate themean 𝜇 by taking the
mean of the data. By shifting the data we will assume from
now on that 𝜇 = 0 ∈ ℝ𝑛. Thus, the model is specified

by determining a set 𝑆 ⊂ ℝ(
𝑛+1
2 ) to which Σ may belong.

Of particular interest for us will be the linear concentration
model described below. The matrix 𝐾 ≔ Σ−1 is called the
concentration matrix. Let us fix a linear space 𝐿 of symmet-
ric 𝑛 × 𝑛 matrices that contains a positive-definite matrix.
A linear concentration model is given by:

𝑆𝐿 ≔ {Σ ∶ 𝐾 = Σ−1 ∈ 𝐿}.
Formally we still require Σ, and hence also𝐾, to be positive
definite.

We have two important invariants of 𝑆𝐿. One is the de-
gree of the model, which is simply the degree of the variety
𝐿−1 ≔ 𝑆𝐿 that is the Zariski closure of 𝑆𝐿 in the ambient
space of 𝑛×𝑛matrices. We note that 𝑆𝐿 is also the Zariski or
Euclidean closure of the locus of inverses of all invertible
matrices in 𝐿. The other invariant is the ML-degree that we
define below in analogy to the case of a coin. Suppose we
are given a data vector 𝑑1 ∈ ℝ𝑛. It does not make sense to
ask what is the probability of observing 𝑑1, as this is zero.
Still, the value of the density function on 𝑑1 is the correct
measure of how likely it is to make such an observation.
Hence, for general data 𝑑1, … , 𝑑𝑘 ∈ ℝ𝑛 with mean zero the
ML-degree is the number of (complex) critical points of the
log-likelihood function:

Σ ↦ log (
𝑘
∏
𝑖=1

𝑓Σ,0(𝑑𝑖)) .

As our probability distribution is no longer discrete, as it
was in case of the coin, instead ofmaximizing the probabil-
ity we maximize the product of values of density functions.
If no condition on Σ is required, i.e., 𝐿 is the whole ambi-
ent space, one can check [DSS09, pp. 43 and 44] that the
optimal Σ is given by:

Σ̂ ≔ 1
𝑘

𝑘
∑
𝑖=1

𝑑𝑖𝑑𝑡𝑖

and is called the sample covariance matrix.

Which Σ ∈ 𝑆𝐿 maximizes the log-likelihood function
when Σ̂ ∉ 𝑆𝐿? There is a beautiful geometric answer to
this question. This is the unique positive definite matrix
Σ̂𝐿 ∈ 𝑆𝐿 such that for all 𝐾 ∈ 𝐿 we have ⟨𝐾, Σ̂𝐿⟩ = ⟨𝐾, Σ̂⟩,
where the pairing is the trace of the product of matrices.
In other words Σ̂𝐿 − Σ̂ ∈ 𝐿⟂ [SU10, p. 604]. For this
reason, one considers the projection 𝜋 ∶ ℙ(𝑆2ℂ𝑛) 99K
ℙ(𝑆2ℂ𝑛/𝐿⟂), where 𝑆2 is the second symmetric power, i.e.,
𝑆2ℂ𝑛 is identified with the space of symmetric 𝑛× 𝑛matri-
ces. The ML-maximization problem then turns out to be
related to finding the fiber of the generically finite map
𝜋|𝑆𝐿 over 𝜋(Σ̂). Indeed, there is a unique positive defi-
nite matrix in 𝑆𝐿 in the fiber and it is the maximizer of
the likelihood function. What about other, possibly com-
plex, points in the fiber? The cardinality of the fiber, for
general Σ̂, is precisely the ML-degree [AGK+21]. In partic-
ular, we see that the ML-degree is the degree of the map
𝜋 ∶ ℙ(𝑆𝐿) 99K ℙ(𝑆2ℂ𝑛/𝐿⟂). Equivalently, it is the cardi-
nality of the intersection |(𝑊 ∩ ℙ(𝑆𝐿)) ⧵ ℙ(𝐿⟂)|, where 𝑊
is a general projective subspace of dimension equal to the
codimension of ℙ(𝑆𝐿) that contains ℙ(𝐿⟂). This is always
upper bounded by the degree of the model and equality
holds when ℙ(𝐿⟂) ∩ ℙ(𝑆𝐿) = ∅. By a theorem of Teissier
[Tei82, II.2.1.3], [JKW21, Lemma 3.1], this happens when
𝐿 is general, however often fails for special 𝐿.

In algebraic statistics both cases are interesting: general
and special 𝐿. Of particular interest are graphical Gaussian
models, where a graph𝐺with 𝑛 vertices, indexed by integers
1, … , 𝑛, encodes the space 𝐿𝐺. Precisely, 𝐿𝐺 is the subspace
of symmetric matrices that have zeros on off-diagonal en-
tries (𝑎, 𝑏) whenever there is no edge between 𝑎 and 𝑏 in 𝐺.
Note that we always allow arbitrary diagonal entries, thus
one can imagine loops at every vertex of 𝐺. We emphasise
that this is a very different construction of a subspace 𝐿
of matrices from the one described in the previous section
and denoted by 𝐿𝐺. Before we had a subspace of diagonal
matrices, while now we obtain a space of symmetric matri-
ces that contains all diagonal matrices. We thus have the
following interesting invariants:

• the degree of the model for general 𝐿 of codimen-
sion 𝑎, which is the degree of the variety 𝑆𝐿. This
degree also equals the ML-degree and is denoted
by 𝜙(𝑛, 𝑎),

• the degree of the model 𝐿𝐺,
• the ML-degree of 𝐿𝐺.

The last two of course depend on 𝐺. It turns out that
even for relatively simple 𝐺, computing those invariants
is highly nontrivial.

Conjecture 2.1. [DSS09, 7.4] If 𝐺 is an 𝑛-cycle then the ML-
degree equals:

(𝑛 − 3) ⋅ 2𝑛−2 + 1.
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The following theorem was proved using the methods
described at the end of the article and confirms a conjec-
ture of Sturmfels and Uhler [SU10].

Theorem 2.2. [DMV21, Theorem 1.4] If𝐺 is an 𝑛-cycle then
the degree of the model equals:

𝑛 + 2
4 (2𝑛𝑛 ) − 3 ⋅ 22𝑛−3.

Recall that the map ℙ(𝑆2ℂ𝑛) 99K ℙ(𝑆2ℂ𝑛) that is given
by inverting the matrix, is also the gradient of the determi-
nant, i.e., the map given by all partial derivatives of the de-
terminant. We have the following commutative diagram
[DMS21, p.6]:

ℙ(𝑆2ℂ𝑛) ℙ(𝑆2ℂ𝑛)

ℙ(𝐿) ℙ(𝐿∗) = ℙ(𝑆2ℂ𝑛/𝐿⟂)

∇det

𝜋

∇(det|ℙ(𝐿))

(∇det)|ℙ(𝐿) (1)

The degree of the model is the last integer in the multide-
gree of the graph of the diagonal map (∇ det)|ℙ(𝐿), while
the ML-degree is the last integer in the multidegree of
graph of the lower map ∇(det|ℙ(𝐿)).

We would like to point out that there are other inter-
esting questions regarding the geometry of the model, like
the generators of the ideal of 𝑆𝐿𝐺 , however this lies outside
the scope of this article.
Euler characteristic. The Euler characteristic 𝜒(𝑋) is one
of the most important discrete invariants of a topological
space 𝑋 . Assuming we may triangulate the space, we could
define it as the number of vertices in the triangulation mi-
nus the number of edges plus the number of triangles etc.
For complex algebraic constructible sets Euler characteris-
tic is additive:

𝜒(𝑋) = 𝜒(𝑋 ⧵ 𝑌) + 𝜒(𝑌). (2)

One may thus often compute it by breaking an algebraic
set into pieces that are easier to understand. Another use-
ful trick is to equip a projective variety 𝑋 with an action of
an algebraic torus 𝑇 = (ℂ∗)𝑘. Then 𝜒(𝑋) = 𝜒(𝑋𝑇), where
𝑋𝑇 is the locus of torus fixed points. In particular, if there
are finitely many 𝑇-fixed points, then the Euler characteris-
tic equals the number of those points. For 𝑋 = ℙ𝑛 with the
standard multiplicative action of the torus consisting of
points with all coordinates nonzero, we get 𝜒(ℙ𝑛) = 𝑛+ 1.

Consider a projective hypersurface 𝑋 = 𝑉(𝑓) ⊂ ℙ𝑛. We
will be mostly interested in the case when ℙ𝑛 is a subspace
of the space of matrices and 𝑓 is the restriction of the deter-
minant. The bottom row in Diagram (1) is thus a special
case of the map:

ℙ𝑛 ℙ𝑛.∇𝑓

Huh [Huh12, p.912], following [DP03], observed a beau-
tiful relation among the Euler characteristic and the multi-
degrees 𝜇𝑖 of the graph of ∇𝑓:

𝜒(ℙ𝑛 ⧵ 𝑋) = ∑
𝑖
(−1)𝑖𝜇𝑖. (3)

A well-known special case is when 𝑋 is smooth. Then ∇𝑓
is defined everywhere. To compute 𝜇𝑖 we may use the iso-
morphism of the domainℙ𝑛 with the graph. We then have
to intersect 𝑖 general hyperplanes, with 𝑛 − 𝑖 polynomials,
that are general linear combinations of partial derivatives
of 𝑓. These partial derivatives do not have common zeros,
thus by a theoremdue to Bertini the intersection is smooth,
and if deg 𝑓 = 𝑑, we have 𝜇𝑖 = (𝑑 − 1)𝑛−𝑖 points, which is
the expected Bézout bound. By (2) and (3), we obtain:

𝜒(𝑋) = 𝜒(ℙ𝑛) − 𝜒(ℙ𝑛 ⧵ 𝑋)

= (𝑛 + 1) − 1 − (1 − 𝑑)𝑛+1
𝑑 .

When 𝑋 has isolated singularities, then all but one 𝜇𝑖’s re-
main the same as in the smooth case. Namely as long as
we intersect with at least one hyperplane in the domain, we
will not see the singularities and we may still apply Bertini
theorem obtaining the Bézout bound. However, for 𝜇𝑛,
the derivatives of 𝑓 intersect in 𝜇𝑛 many simple points and
in the singular points of 𝑋 . Thus, from (𝑑−1)𝑛 we have to
subtract the sum of multiplicities of the isolated singulari-
ties of 𝑋 . These multiplicities are known asMilnor numbers
and in our case are nothing else than the dimension, as a
vector space, of the algebra of the singular locus. We em-
phasise that Equation (3) works for arbitrary singularities.

This theory may be applied to answer Question 3 from
the introduction. Indeed, a matrix with linear entries, may
be identified with a space 𝐿 of matrices. We may compute
𝜒(ℙ(𝐿) ∩ 𝑉(det)) from the multidegree of the graph of the
map ℙ(𝐿) 99K ℙ(𝐿∗) given by the gradient of the determi-
nant composed with the projection from 𝐿⟂.
Example 2.7. Consider the space 𝐿 of 4×4 diagonal, trace-
less matrices, which we obtained from the 4-cycle. We
identify ℙ(𝐿) = ℙ2 ⊂ ℙ3. On ℙ3 the determinant is the
product of the four linear forms corresponding to the co-
ordinates. Thus, the hypersurface 𝑋 = 𝑉(det) is the hyper-
plane arrangement given by four planes. When restricted
to ℙ(𝐿) we obtain four lines, which pairwise intersect. The
six intersection points correspond to the 6 = (4

2
), unique

up to scalar multiplication, rank two, diagonal, traceless
matrices. Denoting a point by 𝑝𝑡, we have:

𝜒(ℙ(𝐿) ⧵ 𝑋) = 𝜒(ℙ2) − 4 ⋅ 𝜒(ℙ1) + 6 ⋅ 𝜒(𝑝𝑡)
= 3 − 4 ⋅ 2 + 6 = 1.

This, as expected, coincides with the signed sum of multi-
degrees, computed in Examples 2.4 and 2.6:

1 − 3 + 3 = 1.
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Example 2.8. Let 𝐿 be the space of 2×2matrices. We have
ℙ(𝐿) = ℙ3 and the gradient of the determinant is a linear
isomorphism. In particular, all 𝜇𝑖 are equal to one and
their signed sum equals 0. The determinantal hypersurface
𝑋 is the quadric from Example 2.1. We obtain:

0 = 𝜒(ℙ3 ⧵ 𝑋) = 4 − 𝜒(𝑋).

Thus, 𝜒(𝑋) = 4. Indeed, readers with experience in al-
gebraic geometry may recognize that 𝑋 is isomorphic to
ℙ1 × ℙ1, via the Segre embedding.

Quadric hypersurfaces. Every homogeneous degree two
polynomial 𝑓 ∈ ℂ[𝑥1, … , 𝑥𝑛] is uniquely represented by a
symmetric 𝑛 × 𝑛 matrix 𝑀𝑓:

𝑓(𝑥) = 𝑥𝑡𝑀𝑓𝑥.

The matrix 𝑀𝑓 has on the diagonal coefficients of 𝑥2𝑖 in 𝑓
and on (𝑖, 𝑗)-th off-diagonal entry, half of the coefficient
of 𝑥𝑖𝑥𝑗. Clearly the properties of 𝑓 and the variety 𝑉(𝑓)
are related to the properties of 𝑀𝑓. We first learned this
relation in school, where, for 𝑛 = 2 and 𝑓 = 𝑎𝑥2 + 𝑏𝑥𝑦 +
𝑐𝑦2 we compute Δ = 𝑏2 − 4𝑎𝑐, which is nothing else than
4 det𝑀𝑓. We know that 𝑓 = 0 has two distinct complex
solutions if and only if Δ ≠ 0, i.e., 𝑀𝑓 has rank two.

From now on we identify the space of degree two ho-
mogeneous polynomials in 𝑛 variables with 𝑆2ℂ𝑛. We
will always assume 𝑓 ≠ 0. In general, the quadric 𝑉(𝑓)
is smooth4 if and only if det𝑀𝑓 ≠ 0 and 𝑓 is a square of
a linear form if and only if rank of 𝑀𝑓 equals one. Given
a smooth quadric 𝑉(𝑓) we may consider all hyperplanes
𝐻 ⊂ ℙ𝑛−1 that are tangent to 𝑉(𝑓) at some point. Each
such 𝐻 corresponds to a point 𝑃𝐻 ∈ (ℙ𝑛−1)∗ in the dual
projective space. It turns out that the locus of all 𝑃𝐻 for
which 𝐻 is tangent to 𝑉(𝑓), is also a quadratic hypersur-
face known as the dual quadric. The matrix associated to
the dual quadric is, up to scaling, 𝑀−1

𝑓 .
Our aim is to head towards Question 4 from the in-

troduction. First, fix a point 𝑃1 ∈ ℙ𝑛−1. Which quadrics
pass through 𝑃1? Note that 𝑓(𝑃1) = 0 is a linear equa-
tion in the coefficients of 𝑓. Thus we obtain a hyperplane
𝐻𝑃1 ⊂ ℙ(𝑆2ℂ𝑛) of polynomials 𝑓 such that 𝑃1 ∈ 𝑉(𝑓).
When we have more points we simply have to intersect
𝐻𝑃1 ∩ ⋯ ∩ 𝐻𝑃𝑘 to obtain the locus of quadrics that pass
through 𝑃1, … , 𝑃𝑘. If 𝑃𝑖’s are general we see that:

• as long as 𝑘 < dimℙ(𝑆2ℂ𝑛) = (𝑛+1
2
) − 1 we have

infinitely many quadrics,
• if 𝑘 = (𝑛+1

2
) − 1 there is precisely one quadric, up

to scaling,
• if 𝑘 > (𝑛+1

2
) − 1 there are no quadrics

4Here, we consider 𝑉(𝑓) as a scheme, thus if 𝑓 is not reduced, i.e., a square of
a linear form, we say it is not smooth.

that pass through all 𝑃𝑖’s. This is slightly less obvious than
one may think, as general 𝑃𝑖’s do not give general hyper-
planes 𝐻𝑃𝑖 . The formal proof could for example rely on
the fact that 𝐻𝑃 ’s do not have base locus, i.e.,⋂𝑃∈ℙ𝑛 𝐻𝑃 =
∅, which is equivalent to the fact that no quadric passes
through all points, plus simple linear algebra. Just to point
out what may go wrong we present the following example.

Example 2.9. We would like to answer the question: how
may, up to scaling, homogeneous degree two polynomials
𝑓 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2

• have a double root and
• vanish at a given point 𝑃 ∈ ℙ1?

We consider the ℙ2 of all polynomials. In this ℙ2 the locus
of polynomials that have a double root is the quadratic
hypersurfaceΔ = 0. We intersect this hypersurface with the
line 𝐻𝑃 . We expect two solutions. This is clearly wrong! If
we fix a root 𝑃 and require that a degree two polynomial
has a double root, then 𝑃 must be the double root. Every
child knows that there is only one, up to scaling, such a
polynomial. The geometry here is that the line 𝐻𝑃 will
be always tangent to 𝑉(Δ) and thus it will intersect it in a
single point.

How about the locus of quadrics that are tangent to
a given hyperplane 𝐻 ⊂ ℙ𝑛−1? We already know that
a smooth quadric represented by 𝑀𝑓 is tangent to 𝐻 if
and only if the dual quadric represented by 𝑀−1

𝑓 passes
through the point 𝑃𝐻 ∈ (ℙ𝑛−1)∗. As we are working
up to scaling we may replace 𝑀−1

𝑓 by the adjugate ma-

trix 𝑀𝑎𝑑𝑗
𝑓 . The entries of 𝑀𝑎𝑑𝑗

𝑓 are degree (𝑛 − 1) poly-
nomials in the original coordinates, i.e., the entries of
𝑀𝑓. The condition (𝑃𝐻)𝑡𝑀𝑎𝑑𝑗

𝑓 (𝑃𝐻) = 0 is thus a degree
(𝑛 − 1) polynomial defining a hypersurface 𝑇𝐻 ⊂ ℙ(𝑆2ℂ𝑛).
Very explicitly this hypersurface is a linear combination of
(𝑛 − 1) × (𝑛 − 1) minors of 𝑀𝑓. It thus makes sense to ask:
how many quadrics are tangent to a given hyperplane and
pass through (𝑛+1

2
)−2 fixed general points? Geometrically

we intersect 𝑇𝐻 with hyperplanes and get deg 𝑇𝐻 = 𝑛 − 1
many points5.

We could be tempted to continue this game. If we con-
sider 𝑎 general points and (𝑛+1

2
)−𝑎−1 general hyperplanes,

how many quadrics pass through the given points and are
tangent to the given hyerplanes? Geometrically we inter-
sect 𝑎 hyperplanes and (𝑛+1

2
) − 𝑎 − 1 hypersurfaces of de-

gree (𝑛−1). Thus we expect that the answer is equal to the

Bézout bound: (𝑛 − 1)(
𝑛+1
2 )−𝑎−1. This, however, is wrong

in general!

5For experts: as our choices are not entirely generic, we should refer here to
Kleiman’s transversality theorem, assuring that we indeed obtain (𝑛 − 1) many
points corresponding to smooth quadrics.

APRIL 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 593



The easiest way to see this is to consider 𝑛 = 3 and five
general lines in ℙ2. If we ask for quadrics that are tangent
to all five, we may equivalently ask for dual quadrics pass-
ing through five points. But here we already know the
answer is one, not 32. What goes wrong? We recall that
our hypersurfaces 𝑇𝐻 are defined by linear combinations
of minors of size (𝑛 − 1). In particular, each 𝑇𝐻 contains
all matrices of rank at most (𝑛 − 2). This is a very differ-
ent situation than for the hyperplanes 𝐻𝑃 , which had no
base locus. The codimension of the locus of symmetric
𝑛×𝑛matrices of rank (𝑛−2) equals three. Thus, if we take
𝑏 ≥ 3 general hyperplanes and intersect the corresponding
hypersurfaces 𝑇𝐻 we will get:

• a big codimension three component of matrices
of rank at most (𝑛 − 2) and

• a small codimension 𝑏 component.

The meaningful geometric counting problem is to ask for
smooth quadrics that pass through the given points and are
tangent to the given hyperplanes. Thus, we would like to
intersect the small codimension 𝑏 component with hyper-
planes 𝐻𝑃𝑖 and count the number of points. However, the
contribution of the big component makes such computa-
tions quite hard.

Let us state the enumerative problem in a waymore suit-
able for this article. By fixing points 𝑃1, … , 𝑃𝑎, we fix a lin-
ear space 𝐿 ⊂ ℙ(𝑆2ℂ𝑛) of quadrics that pass through those
points. We may now consider the rational map:

ℙ(𝑆2ℂ𝑛) 99K ℙ(𝑆2ℂ𝑛)∗

that is the gradient of the determinant, or equivalently, tak-
ing adjugate or inverse of a matrix6. We restrict the map to
ℙ(𝐿), obtaining the diagonal map in Diagram (1). Each
tangency to a hyperplane condition is in fact intersection
with a hyperplane in the dual space ℙ(𝑆2ℂ𝑛)∗. We thus see
that the number of quadrics that pass through the given
points and are tangent to the correct number of general
hyperplanes is in fact one entry in the multidegree of the
graph of (∇ det)|ℙ(𝐿). Note that here the problemof base lo-
cus and low rank matrices disappears. Indeed in the prod-
uct of projective spaces both: hyperplanes in the domain
and hyperplanes in the codomain do not have the base lo-
cus. Also as the graph is by definition the closure of the lo-
cus corresponding to full rankmatrices, we do not have the
additional large component. Note that for general points
𝑃1, … , 𝑃𝑎 we get:
the number of quadrics that pass through all 𝑃𝑖’s and are tangent
to general (𝑛+1

2
) − 𝑎− 1 hyperplanes equals precisely the degree

𝜙(𝑛, 𝑎) of the general linear concentration model.
In many cases in enumerative problems the way to ob-

tain the correct answer in a nice way is to change the

6In the projective setting all these maps are the same on the Zariski open set
of invertible matrices. However, taking adjugate matrix is well-defined also for
matrices of rank 𝑛 − 1.

ambient space where intersection is performed. This usu-
ally requires very good, clever ideas. Passing to the graph
of the map, instead of ℙ𝑛 or ℙ(𝐿) seems to be one. How-
ever, it is only the first step, as such graph is in general not
smooth. Fortunately, in the cases interesting to us, great
mathematicians before us already had the right ideas. We
may present these in the next subsection.
Complete varieties. In a quite non-standard way, we do
not refer to complete varieties, as a synonym for proper.
The complete varieties as described below are very special
projective varieties, that may be regarded as particularly
nice compactifications of the locus of nondegenerate ma-
trices.

Let𝑊 be the space of diagonal or symmetric or general
𝑛 × 𝑛 matrices. Let 𝑊 ∘ be the subset of full rank matrices.
We could see ℙ(𝑊 ∘) ⊂ ℙ(𝑊) as a natural compactification.
However, as we have seen in the previous section the low
rank matrices in ℙ(𝑊) often turn out to be problematic.
There exists a well-known procedure in algebraic geometry
of replacing a small set by a divisor, i.e., a codimension
one set, known as the blow-up. Say we have a subset 𝑆 ⊂ ℙ𝑛,
where 𝑆 = 𝑉(𝑔0, … , 𝑔𝑠) and all 𝑔𝑖’s are polynomials of fixed
degree 𝑑. For our purposes, we define the blow-up of ℙ𝑛
at 𝑆 as the graph of the rational map given by 𝑔𝑖’s:

ℙ𝑛 99K ℙ𝑠.
This procedure is particularly nice when 𝑆 is smooth. In
our case ℙ𝑛 = ℙ(𝑊) and 𝑆 is the set of rank at most 𝑛 − 2
matrices. Thus, the graph we considered, is the blow-up
construction, where 𝑔𝑖’s are the minors. However, the set
𝑆 is not smooth, it is singular along matrices of rank at
most 𝑛 − 3, which further is a set singular along matrices
of rank at most 𝑛−4 etc. until rank one matrices, which is
a smooth locus in ℙ(𝑊).

The idea is to first blow-up rank one matrices, then rank
two matrices, etc. until finally we blow-up rank 𝑛 − 2 ma-
trices. This may be realized at once as follows. Consider
the rational map:

𝜓 ∶ ℙ(𝑊) 99K ℙ(𝑊2) ×⋯ × ℙ(𝑊𝑛−1)
where the map ℙ(𝑊) 99K ℙ(𝑊 𝑖) is given by 𝑖 × 𝑖 minors.
The dimension of ℙ(𝑊 𝑖) depends on the case we are in,
e.g., for diagonal matrices dim𝑊 𝑖 = (𝑛

𝑖
), while for general

matrices dim𝑊 𝑖 = (𝑛
𝑖
)2, however otherwise the construc-

tion remains the same. The (closure of the) graph of 𝜓 is
known as:

• permutohedral variety in the diagonal case,
• variety of complete quadrics in the symmetric

case,
• variety of complete collineations in the case of

general square matrices7.

7One may also define this variety for rectangular matrices, however here we do
not pursue this direction.
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It is equal to the iterative blow-up of rank 𝑖 matrices for
𝑖 = 1, … , 𝑛 − 2 anticipated above. This variety is smooth.
By projecting to ℙ(𝑊)×ℙ(𝑊𝑛−1) it becomes a resolution of
singularities of the graph of the map inverting the matrix.
In this article, to emphasise the common features of the
above varieties, we refer to all of them as complete varieties.

As an example let us show how one may think about
points of the variety 𝑋 of complete quadrics. First, there is
an open locus, corresponding to quadrics of rank at least
(𝑛 − 1), which is isomorphic to an open subset of ℙ(𝑊),
via the projection 𝑋 → ℙ(𝑊). However, there are many
points 𝑥 ∈ 𝑋 mapping to a given quadric 𝑄 ∈ ℙ(𝑊) if the
rank of 𝑄 is at most 𝑛 − 2. Fix such a quadric 𝑄 ∈ ℙ(𝑊).
Let 𝑉 ⊂ ℂ𝑛 be the image of the symmetric matrix 𝐴𝑄. It
turns out that the fiber over 𝑄 is the variety of complete
quadrics over the vector spaceℂ𝑛/𝑉 . We see that the points
of the variety of complete quadrics may be identified with
the data consisting of:

• flags 𝑉1 ⊂ ⋯ ⊂ 𝑉 𝑘 = ℂ𝑛 and
• full rank quadrics on each 𝑉 𝑖+1/𝑉 𝑖, i.e., elements

of ℙ(𝑆2(𝑉 𝑖+1/𝑉 𝑖)∘).
A particularly interesting case is when the flag is full, as
then the data of quadrics is trivial — there is only one up
to scaling nonzero, degree two homogeneous polynomial
in one variable. Thus we see that the variety of complete
quadrics naturally contains the full flag variety 𝐹. For ex-
perts: the inclusion 𝐹 → 𝑋 induces the inclusion of Pi-
card groups Pic(𝑋) → Pic(𝐹). The right-hand side is un-
derstood in terms of the root system of type 𝐴. This allows
us to have a good understanding of Pic(𝑋).

3. Intersection Theory
Classical algebraic intersection theory associates to an al-
gebraic variety 𝑋 , the graded Chow ring CH(𝑋). We have
already seen this on the example of 𝑋 = ℙ𝑛. In general,
the degree 𝑘 part of CH(𝑋) is spanned by classes of codi-
mension 𝑘 subvarieties, modulo rational equivalence. For
example for 𝑘 = 1we obtain the divisor class group, which
for smooth 𝑋 coincides with the Picard group Pic(𝑋). The
multiplication in CH(𝑋) corresponds to intersection. Pre-
cisely, if 𝑌, 𝑍 ⊂ 𝑋 intersect transversally, then [𝑌] ⋅ [𝑍] =
[𝑌 ∩ 𝑍]. For all the varieties that we consider in this arti-
cle the Chow ring is isomorphic to the cohomology ring.
We refer the reader interested in intersection theory to the
book [EH16].
Volume polynomials. Given a 𝑘-dimensional subvariety
𝑌 ⊂ 𝑋 we may define a polynomial function on the Picard
group Pic(𝑋):

Pic(𝑋) ∋ 𝐷 ↦ deg([𝑌][𝐷]𝑘) ∈ ℤ,
where deg is the degree function that to a zero-dimensional
(class of a) scheme associates its degree. If we prefer
to work in coordinates and obtain a polynomial we fix

divisors 𝐷1, … , 𝐷𝑛 ∈ Pic(𝑋). We define the volume polyno-
mial of 𝑌 on ℚ𝑛 by:

(𝑡1, … , 𝑡𝑛) ↦ deg ((∑ 𝑡𝑖[𝐷𝑖])𝑘[𝑌]) .
A divisor 𝐷 is called nef (numerically effective) if for

every curve 𝐶 ⊂ 𝑋 the number deg([𝐶] ⋅ [𝐷]) is nonneg-
ative. A particularly nice case is that of a volume polyno-
mial when 𝐷1, … , 𝐷𝑛 are nef. Then the volume polynomial
is Lorentzian [BH20, Theorem 4.6], exhibiting a lot of nice
properties.

In case of complete varieties there is a distinguished set
of nef divisors. By definition, the complete variety is a sub-
variety of the product ℙ(𝑊) × ℙ(𝑊2) × ⋯ × ℙ(𝑊𝑛−1), the
hyperplane 𝐻𝑖 ⊂ ℙ(𝑊 𝑖) (times the remaining ℙ(𝑊 𝑗)’s)
gives a nef divisor 𝐿𝑖 on 𝑋 .

For example, when𝑋 is the variety of complete quadrics,
the 𝐿𝑖’s are the extremal rays generating the nef cone — all
nef divisors are nonnegative linear combinations of 𝐿𝑖’s.
Via the containment of Pic(𝑋) in the root system of type 𝐴
the 𝐿𝑖’s correspond to (twice) the fundamental roots. For
the permutohedral variety the 𝐿𝑖’s do not generate the nef
cone, however they generate the 𝑆𝑛 (i.e., permutation) in-
variant part.

To sum up: consider an 𝑎-dimensional linear space 𝐿 of
𝑛×𝑛matrices. Assume 𝐿 contains an invertiblematrix. The
closure of invertible matrices in 𝐿 in a complete variety 𝑋
(which depends on the type of matrices 𝐿 consists of) gives
a subvariety 𝑌 𝐿. We obtain the Lorentzian polynomial given
by deg(∑ 𝑡𝑖𝐿𝑖)𝑎−1[𝑌 𝐿]. In [CM21] the coefficients of this
polynomial were introduced and called the characteristic
numbers.

By setting 𝑡2 = ⋯ = 𝑡𝑛−1 = 0 we recover the chromatic
polynomial of a tensor, defined also in [CM21]. Its coeffi-
cients (up to binomial factors) are precisely the multide-
grees of the graph of the map inverting matrices8 from 𝐿.

In a very related construction, replacing the restriction
to 𝐿 of the gradient of the determinant, by the gradient of
the restriction to 𝐿, we obtain the relative chromatic polyno-
mial. These two coincide, e.g., when 𝐿 consists of diagonal
matrices, or when 𝐿 is general. These two invariants seem
very important and, in particular, provide answers to all
the questions from the introduction.
Methods in a nutshell. Here, we would like to briefly
mention a few methods that rely on complete varieties
and allow to compute the intersection numbers. For more
details we refer to [MMM+20,MMW21,DMS21]. For sim-
plicity, consider the variety 𝑋 of compete quadrics. Say we

want to compute [𝐿1]𝑎[𝐿𝑛−1](
𝑛+1
2 )−1−𝑎. The first trick is due

to Schubert. One notices that on 𝑋 we have another set of
divisors. Indeed, let 𝑆 𝑖 be the exceptional divisor coming
from the blow-up of rank 𝑖 matrices. It turns out that 𝑆 𝑖
8Equivalently gradient of the determinant
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correspond to (twice) the simple positive roots. We thus
have relations in Pic(𝑋) that allow us to translate from 𝐿𝑖’s
to 𝑆 𝑖’s. We obtain:

[𝐿1] =
1
𝑛

𝑛−1
∑
𝑗=1

(𝑛 − 𝑗)[𝑆𝑗].

This reduces the problem to computing all

[𝑆𝑗][𝐿1]𝑎−1[𝐿𝑛−1](
𝑛+1
2 )−1−𝑎. At first this looks like a more

complicated problem. The trick is to realize that one
can replace [𝑆𝑗] by a simpler variety. First, we have a ra-
tional map 𝑓𝑗 ∶ 𝑆𝑗 99K 𝐺(𝑗, 𝑛), from 𝑆𝑗 to the Grass-
mannian parameterizing 𝑗-dimensional subspaces of an
𝑛-dimensional vector space. To a point 𝑠 ∈ 𝑆𝑗 mapping
to a rank 𝑗 symmetric matrix 𝑀𝑠 the map 𝑓𝑗 associates
the image of 𝑀𝑠. Fixing a point 𝑉 ∈ 𝐺(𝑗, 𝑛) we see that
the fiber of 𝑓𝑗 is birational with: ℙ(𝑆2𝑉) for the choice of
𝑀𝑠 times ℙ(𝑆2(ℂ𝑛/𝑉)∗), as after fixing 𝑀𝑠 we said that the
fiber of 𝑋 over𝑀𝑠 is isomorphic to the variety of complete
quadrics on ℂ𝑛/𝑉 . Hence, 𝑆𝑗 is birational to the product
bundle ℙ(𝑆2𝒰) × ℙ(𝑆2𝒬∗) over 𝐺(𝑗, 𝑛), where 𝒰 and 𝒬 are
respectively the universal and quotient bundle. This bira-
tional morphism is good enough to switch from intersect-
ing with [𝑆𝑗] on 𝑋 to intersecting on the product bundle.
The classes [𝐿1] and [𝐿𝑛−1] also translate nicely and may
be expressed in terms of characteristic classes of 𝑆2𝒰 and
𝑆2𝒬. These have been investigated in detail, cf. [Pra88] and
references therein.

4. Future
The unified perspective on the presented problems pro-
vides not only new tools, but may also be used to try to
extend theories from one field to another. For example,
when 𝐿 is general, in the diagonal case, the associated ma-
troid is uniform and characteristic numbers are simply bi-
nomial coefficients (𝑛

𝑎
). For fixed 𝑎, this is a polynomial

in 𝑛 with very nice reciprocity properties. In the symmet-
ric case we obtain 𝜙(𝑛, 𝑎), which is also a polynomial in 𝑛.
However, here the reciprocity results are much less under-
stood, with first, very recent results presented in [Gał22].
For positive 𝑛 and 𝑎 the function 𝜙(𝑛, 𝑎) counts the num-
ber of quadrics satisfying given conditions. Is there a nice
interpretation for fixed positive 𝑎 and negative 𝑛?

Another interesting perspective is to consider the given
constructions as invariants of tensors. Indeed, each 3-way
tensor naturally gives a space of matrices. What does the
associated Lorentzian polynomial tell us about the tensor?
When do two tensors have the same Lorentzian polyno-
mial? Can we obtain more invariants coming from alge-
braic geometry from the variety 𝐿−1? The study of tensors
from this perspective has recently been initiated in [CK22].

The Bodensee program [DMS21] studies how discrete in-
variants, like 𝜙(𝑛, 𝑎), change, as the variety, here 𝑛, changes.

We already mentioned the polynomiality result of 𝜙(𝑛, 𝑎),
however the coefficients of this polynomial remain quite
mysterious. Their absolute values seem to be log-concave.
At present, we do not know the theory that could explain
such phenomena.
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