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Problems with nonlinear boundary conditions arise natu-
rally in many applications. For instance, in population dy-
namics where an impact of habitat-edges (boundary) on
the dispersal pattern of species as they reach the bound-
ary takes place in spatial ecology [CC06]. They occur
when the biochemical reactions take place at or near the
boundary, for example, in the limb bud development of
a chick in which a chemical reaction produces outgrowth
due to cell growth and division, and interactions between
morphogens produced in several zones of the limb bud
[DO99]. They also appear in noninvasive testing meth-
ods to locate defects in a medium by using boundary data
measurements (see, e.g., [CCMM16]). In cryosurgery (a
minimally invasive treatment used to treat some types of
cancers and some conditions that may become cancer),
a highly exothermic reaction takes place in a thin layer
around the boundary in order to destroy abnormal tissue
[LOS98]. These examples are not exhaustive.

Diffusion-type equations play a crucial role in these
problems, and associated steady state problem and eigen-
value problems are critical in understanding the dynam-
ics of diffusion-type equations. Hence, the qualitative
(analytical) study of such equations is essential for better
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understanding and modeling nonlinear processes. The in-
vestigation of problems with nonlinear boundary condi-
tions has therefore attracted a lot of attention in recent
years; see for instance [Ama76,MN10,Mav12,MP17,LS18,
CL15] and references therein.

In this article, we first introduce the spectral problem
for elliptic equations with spectral-parameter dependent
boundary conditions. We then discuss some recent results
on the solvability of nonlinear diffusion problems when
the nonlinearity on the boundary interacts in some sense
with the spectrum, especially the effect of the first eigen-
value. We will present some of the results without proofs.
References will be mentioned as appropriate.

In the following sections, we will first consider the lin-
ear Steklov problem in which the spectral parameter is in
the boundary condition. Then, we discuss in-depth the
properties of the first eigenvalue as well as briefly consider
the one-dimensional case. In the last section, we take up
the case of nonlinear perturbations of the linear Steklov
problem, and set up the problem as a nonlinear first-order
boundary-flux equation with a second-order elliptic par-
tial differential equation “constraint” inside the domain.
Considering asymptotic conditions on the boundary non-
linearity, we present existence, bifurcation and multiplic-
ity results. A sketch of the bifurcation diagram is also pro-
vided.
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Steklov Spectrum and its Properties
In the seminal paper entitled “Sur les problèmes fonda-
mentaux de la physiquemathématique (suite et fin),” pub-
lished in 1902 in the Annales Scientifiques de l’École Nor-
male Supérieure [Ste02], W. Steklov considered the (spec-
tral) problem of finding a harmonic function 𝑣 inside a
convex bounded region Ω in the plane ℝ2 with smooth
boundary surface 𝑆 = 𝜕Ωwhich satisfies the boundary con-
dition

𝜕𝑣
𝜕𝑛 = 𝜆𝜙𝑣 on 𝑆,

where 𝜕/𝜕𝑛 denotes the directional derivative in the direc-
tion of the (unit) outward normal vector to the boundary
𝑆, 𝜆 ∈ ℝ is a spectral parameter, and 𝜙 is a given smooth
positive (weight) function. The convexity condition on the
regionΩ and the smoothness of the surface 𝑆 were relaxed
by H. Poincaré, and the positive weight function 𝜙 was in-
troduced by E. Le Roy. Soon after that S. Zaremba con-
sidered the more general (spectral) problem with a lower-
order term

Δ𝑣 + 𝜉𝑣 = 0 in Ω,
𝜕𝑣
𝜕𝑛 = 𝜆𝜙𝑣 on 𝑆,

where Δ is the Laplace operator and 𝜉 is a (fixed) constant.
Later on in [Pay67], Payne presented a physical problem

that describes the vibration of an elasticmembranewith its
whole mass uniformly distributed on the boundary with
density 𝜙 leading to the problem

Δ𝑣 = 0 in Ω,
𝜕𝑣
𝜕𝑛 = 𝜆𝜙𝑣 on 𝑆,

(1)

where Ω denotes an 𝑛-dimensional body with boundary
𝑆 = 𝜕Ω.

There have beenmany results and generalizations of the
Steklov problem. Wemention the book by Bandle [Ban80]
and the papers by Auchmuty [Auc04] and Mavinga
[Mav12] for higher dimensions with mild regularity con-
ditions on the data. We refer also to Amann [Ama76]
who discussed the existence of the first eigenvalue of the
spectrum for this problem under somewhat strong regu-
larity conditions on the data. Although a more general
linear operator with lower order terms was considered in
[Ama76], the techniques there used the theory of positive
operators (Krein–Rutman theorem); which of course does
not apply when trying to obtain higher eigenvalues. The ar-
guments in [Auc04], which yielded higher eigenvalues as
well, involved maximization of the boundary functional
on bounded closed convex subsets of the Sobolev space
𝐻1(Ω).

In this article, we present an approach used in [Mav12]
where the minimization of the (differential) functional on
an appropriate subspace of 𝐻1(Ω) is used.

Steklov eigenproblem. LetΩ ⊂ ℝ𝑁 , 𝑁 ≥ 2, be a bounded
domain with smooth boundary 𝜕Ω. Consider the second-
order elliptic equation

−Δ𝑣 + 𝑐(𝑥)𝑣 = 0 in Ω,
𝜕𝑣
𝜕𝑛 = 𝜇𝜎𝑣 on 𝜕Ω,

(2)

where the (given) functions 𝑐 ∶ Ω → ℝ and the weight
𝜎 ∶ 𝜕Ω → ℝ satisfy the following conditions.

(C) 𝑐 ∈ 𝐿∞(Ω) and 𝜎 ∈ 𝐿∞(𝜕Ω) are nonnegative functions
such that ∫Ω 𝑐(𝑥) 𝑑𝑥 > 0 and ∫𝜕Ω 𝜎𝑑𝑆 > 0. Here, 𝐿∞
denotes the real Lebesgue space of bounded functions.

Throughout this article, 𝐻1(Ω) denotes the usual real
Sobolev space of functions on Ω; which is a Hilbert space
endowed with the 𝑐-inner product defined by

(𝑢, 𝑣)𝑐 = ∫
Ω
∇𝑢∇𝑣 +∫

Ω
𝑐(𝑥)𝑢𝑣, (3)

with the associated norm denoted by ‖𝑣‖𝑐. This norm is
equivalent to the standard 𝐻1(Ω)-norm.

Besides the Sobolev spaces, we make use, in what fol-
lows, of the real Lebesgue space 𝐿2(𝜕Ω) of square inte-
grable functions, and the compactness of the trace oper-
ator Γ ∶ 𝐻1(Ω) → 𝐿2(𝜕Ω) (see, e.g., [Bre11] and references
therein). Sometimes we will just use 𝑢 in place of Γ𝑢when
considering the trace of a function on 𝜕Ω.We will denote
the 𝐿2(𝜕Ω)-inner product by (𝑢, 𝑣)𝜕 = ∫𝜕Ω 𝑢𝑣 and the asso-
ciated norm by ‖𝑢‖𝜕.We also set

(𝑢, 𝑣)𝜍 = ∫
𝜕Ω

𝜎(𝑥)𝑢𝑣 and ‖𝑢‖2𝜍 = ∫
𝜕Ω

𝜎(𝑥)𝑢2, (4)

for 𝑢, 𝑣 ∈ 𝐻1(Ω). Observe that because of condition (C), it
can happen that 𝜎 = 0 in a subset of positive measure (on
the boundary 𝜕Ω) where 𝑢 ≠ 0. In this case ‖.‖𝜍 is only
a semi-norm. Set 𝑉𝜍(Ω) ≔ {𝑢 ∈ 𝐻1(Ω) ∶ ‖𝑢‖𝜍 = 0}. It is
readily seen that 𝑉𝜍(Ω) is a closed linear subspace of𝐻1(Ω).
Observe that if 𝜎(𝑥) > 0 on 𝜕Ω, then the subspace 𝑉𝜍(Ω)
reduces simply to 𝐻1

0(Ω). Let us denote the 𝑐-orthogonal
complement of 𝑉𝜍(Ω) by 𝐻𝜍(Ω) = [𝑉𝜍(Ω)]

⟂
. Therefore,

one can split

𝐻1(Ω) = 𝑉𝜍(Ω) ⊕𝑐 𝐻𝜍(Ω) (5)

as a direct orthogonal sum (in the sense of𝐻1-𝑐-inner prod-
uct); that is, every 𝑢 ∈ 𝐻1(Ω) can be written in a unique
way in the form 𝑢 = 𝑢1 + 𝑢2, where 𝑢1 ∈ 𝑉𝜍(Ω) and
𝑢2 ∈ 𝐻𝜍(Ω) with (𝑢1, 𝑢2)𝑐 = 0.

Definition. The Steklov eigenproblem (in its variational
form) is to find a pair (𝜇, 𝜑) ∈ ℝ × 𝐻1(Ω) with 𝜑 ≢ 0 such
that

∫
Ω
∇𝜑∇𝜓 +∫

Ω
𝑐(𝑥)𝜑𝜓 = 𝜇∫

𝜕Ω
𝜎(𝑥)𝜑𝜓
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for every 𝜓 ∈ 𝐻1(Ω). The real number 𝜇 is called an eigen-
value of (2) and the function 𝜑 is said to be an eigenfunction
associated to the eigenvalue 𝜇.

Now, choosing 𝜓 = 𝜑, one sees immediately that if
there is such an eigenpair, then 𝜇 > 0 and ∫𝜕Ω 𝜎𝜑2 > 0.
Otherwise, 𝜑 would be a constant function; which would
contradict the assumption (C) imposed on 𝑐(𝑥). Therefore
𝜑 ⟂ 𝑉𝜍(Ω) in the 𝐻1-𝑐-inner product defined in (3) above.
Notice also that, if 𝑢 ∈ 𝑉𝜍 with 𝑢 ≠ 0, then ‖𝑢‖𝑐 > 0 and
the quotient ‖𝑢‖𝑐/‖𝑢‖𝜍 ≔ ∞.

The set Σ of 𝜇 ∈ ℝ such that (2) has a nontrivial solu-
tion, is called the Steklov spectrum.

In what follows, we present some results on the prop-
erties of the Steklov spectrum. Namely that Σ forms a
countably infinite set {𝜇𝑘 ∶ 𝑘 ∈ ℕ} ⊂ ℝ+ without finite
accumulation point. Thus, its elements can be arranged in
an increasing sequence. We omit the details and refer to
[Mav12] for the proof.

Variational characterization of the Steklov spectrum. As-
sume that the condition (C) holds, then

(i) The Steklov eigenproblem (2) has a sequence of real
eigenvalues

0 < 𝜇1 < 𝜇2 ≤ … ≤ 𝜇𝑗 ≤ … → ∞, as 𝑗 → ∞,

and these eigenvalues satisfy the variational character-
izations

𝜇1 = inf
ᵆ∈𝐻1
𝑢≠0

∫Ω |∇𝑢|2 + ∫Ω 𝑐(𝑥)𝑢2
∫𝜕Ω 𝜎(𝑥)𝑢2

(6)

and for 𝑗 = 1, 2, …

𝜇𝑗+1 = inf
ᵆ∈𝑊𝑗
𝑢≠0

∫Ω |∇𝑢|2 + ∫Ω 𝑐(𝑥)𝑢2
∫𝜕Ω 𝜎(𝑥)𝑢2

, (7)

where 𝑊 𝑗 = {𝑢 ∈ 𝐻𝜍(Ω) ∶ (𝑢, 𝜑𝑖)𝜍 = 0 for 𝑖 =
1, … , 𝑗} and 𝜑𝑖 are the eigenfunctions corresponding to
𝜇𝑗. (Hence, each eigenvalue has a finite-dimensional
eigenspace.)

(ii) The normalized eigenfunctions provide a complete 𝑐-
orthonormal basis of𝐻𝜍(Ω). Moreover, each function
𝑢 ∈ 𝐻𝜍(Ω) has a unique representation of the form

𝑢 =
∞
∑
𝑗=1

𝑐𝑗𝜑𝑗 with 𝑐𝑗 ≔
1
𝜇𝑗
(𝑢, 𝜑𝑗)𝑐 = (𝑢, 𝜑𝑗)𝜍

and ‖𝑢‖2𝑐 =
∞
∑
𝑗=1

𝜇𝑗|𝑐𝑗|2.

In addition

‖𝑢‖2𝜍 =
∞
∑
𝑗=1

|𝑐𝑗|2.

Observe that the variational characterization (6) gives
the trace inequality

𝜇1∫
𝜕Ω

𝜎(𝑥)𝑢2 ≤ ∫
Ω
|∇𝑢|2 +∫

Ω
𝑐(𝑥)𝑢2 (8)

for all 𝑢 ∈ 𝐻1(Ω). Moreover if equality holds in (8), then 𝑢
is a multiple of an eigenfunction of Eq.(2) corresponding
to 𝜇1.

On the other hand, for every 𝑣 ∈ ⊕𝑖≤𝑗𝐸(𝜇𝑖) and 𝑤 ∈
⊕𝑖≥𝑗+1𝐸(𝜇𝑖) we have that

‖𝑣‖2𝑐 ≤ 𝜇𝑗‖𝑣‖2𝜍 𝑎𝑛𝑑 ‖𝑤‖2𝑐 ≥ 𝜇𝑗+1‖𝑤‖2𝜍, (9)

where 𝐸(𝜇𝑖) denotes the 𝜇𝑖-eigenspace and⊕𝑖≤𝑗𝐸(𝜇𝑖) is the
span of eigenfunctions associated to eigenvalues up to 𝜇𝑗.

Hence, this gives a splitting of the space 𝐻𝜍(Ω) (and
hence of 𝐻1(Ω)).
Remark. Note that if 𝑐 ≡ 0 (i.e., the harmonic equation
case) then 𝜇 = 0 is the first eigenvalue of (2) with eigen-
function 𝜑 ≡ 1 onΩ. Let usmention here that the eigenval-
ues and eigenfunctions of the harmonic operator are used
in fluid mechanics, heat transmission, electromagnetism,
and material design (see, e.g., [Lip98, CCMM16]). They
play an important role in the study of isoperimetric in-
equalities (see, e.g., [Pay67]).

Properties of the first eigenvalue. The first eigenvalue 𝜇1
is principal; that is, it is simple (i.e., its associated eigen-
functions are each a constantmultiple of one another) and
the associated eigenfunction 𝜑1 doesn’t change sign in Ω
(i.e., it is either strictly positive or strictly negative).

We first show that 𝜑1 does not change sign in Ω. In-
deed, suppose it does, and let 𝜑+1 = max{𝜑1, 0} and 𝜑−1 =
min{𝜑1, 0}, we know that 𝜑+1 and 𝜑−1 ∈ 𝐻1(Ω).

By the characterization of 𝜇1 it follows that (𝜑1, 𝜑1)𝑐 =
𝜇1(𝜑1, 𝜑1)𝜍. Therefore,

0 ≤ (𝜑+1 , 𝜑+1 )𝑐 + (𝜑−1 , 𝜑−1 )𝑐
− 𝜇1(𝜑+1 , 𝜑+1 )𝜍 − 𝜇1(𝜑−1 , 𝜑−1 )𝜍
= (𝜑1, 𝜑1)𝑐 − 𝜇1(𝜑1, 𝜑1)𝜍 = 0.

It follows immediately that 𝜑+1 and 𝜑−1 are also eigen-
functions corresponding to 𝜇1. From [Bre11], we get that
𝜑+1 > 0 a.e in Ω and 𝜑−1 < 0 a.e in Ω, which is impossible.
Thus 𝜑1 does not change sign in Ω.

Next, we claim that 𝜇1 is simple if and only if 𝜑1 does
not change sign. Indeed, If 𝜑1 changes sign then 𝜑+1 and
𝜑−1 are also eigenfunctions corresponding to 𝜇1 and they
are linearly independent. Hence, 𝜇1 is not simple. On the
other hand, suppose that 𝜇1 is not simple and let 𝜑 and
𝜓 be two eigenfunctions corresponding to 𝜇1; they are lin-
early independent. If 𝜑 or 𝜓 changes sign then the claim is
proved. Otherwise suppose without loss of generality that
𝜑 and 𝜓 are positive then we will prove that there exists
𝑎 ∈ ℝ such that the eigenfunction (corresponding to 𝜇1)
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𝜑 + 𝑎𝜓 changes sign. Indeed, suppose that for all 𝛼 ∈ ℝ,
𝜑 + 𝛼𝜓 does not change. Let the function ℎ ∶ ℝ → ℝ be
defined by ℎ(𝛼) = ∫𝜑+𝛼∫𝜓. Since ℎ is continuous there
exists 𝑎 ∈ ℝ such that ℎ(𝑎) = ∫𝜑 + 𝑎∫𝜓 = 0. Hence,
𝜑 = −𝑎𝜓 which contradicts the fact that 𝜑 and 𝜓 are lin-
early independent. Thus, 𝜑 + 𝑎𝜓 changes sign.

Remark. If the boundary 𝜕Ω is smooth and the functions
𝑐 and 𝜎 are Hölder continuous, then by the regularity ar-
guments for elliptic equations (see, e.g., [Bre11, Theorem
9.26 and Theorem 9.34]) it follows that 𝜑1 ∈ 𝐶2,𝛾(Ω) ∩
𝐶0,𝛾(Ω) where 0 < 𝛾 < 1. The Hopf Lemma and the sub-
sequent strong maximum principle (or Boundary Point

Lemma) shows that the outer normal derivative
𝜕𝜑1
𝜕𝑛 (𝑥) <

0 whenever 𝜑1(𝑥) = 0 with 𝑥 ∈ 𝜕Ω. Hence, one has that
𝜑1 > 0 on Ω.

Remark. As shown above, we have completely described
the spectrum of the Laplace operator. We would like to
mention that in the case of the p-Laplacian operator, the
Steklov spectrum is not completely known, although one
may still obtain an infinite sequence of eigenvalues. More-
over, if 𝜎 changes sign appropriately on 𝜕Ω, then problem
(2) possesses an infinite sequence of positive eigenvalues
and an infinite sequence of negative eigenvalues

−∞ ← … ≤ 𝜇−2 < 𝜇−1 < 0 < 𝜇1 < 𝜇2 ≤ … → ∞,
as 𝑗 → ∞. In addition, 𝜇±1 are both principal eigenvalues.
We refer to [CL15] for details.

So far, we have presented the Steklov spectrum for the
𝑁-dimensional equationwith𝑁 ≥ 2. For sake of complete-
ness, let us make some comments on the one-dimensional
case.

The one-dimensional case. Consider the one-dimen-
sional domain Ω = (0, 1) with 𝑐 ≡ 1 and 𝜎 ≡ 1. The
spectral problem (2) can be rewritten as a second order
ordinary differential equation

−𝑣″ + 𝑣 = 0 in (0, 1),
−𝑣′(0) = 𝜇𝑣(0)
𝑣′(0) = 𝜇𝑣(1)

(10)

In this case, the differential equation can be solved ex-
plicitly by using the characteristic polynomial technique,
and the general solution of (10) is of the form 𝑢(𝑥) =
𝑐1𝑒𝑥+𝑐2𝑒−𝑥, where 𝑐1 and 𝑐2 are constants. Taking into ac-
count the boundary conditions, we obtain only two (sim-
ple) eigenvalues

𝜇1 =
𝑒 − 1
𝑒 + 1 < 𝜇2 =

1
𝜇1

= 𝑒 + 1
𝑒 − 1 .

The eigenfunctions associated to 𝜇1 and 𝜇2 are given by
𝜑1(𝑥) = 𝑒𝑥 + 𝑒1−𝑥 and 𝜑2(𝑥) = 𝑒𝑥 − 𝑒1−𝑥, respectively. Ob-
serve that 𝜑1(0) = 𝜑1(1) = 1 + 𝑒 and 𝜑1(𝑥) > 0 for all
𝑥 ∈ [0, 1], and 𝜑2(0) = 1 − 𝑒 = −𝜑2(1). We see that 𝜑2

changes sign and it is orthogonal to 𝜑1 with respect to the
𝐿2((0, 1))-inner product as well as the𝐻1((0, 1))-inner prod-
uct.

More generally, when 𝑐 ∈ 𝐿1(0, 1) is nonnegative and
∫1
0 𝑐 > 0 , and the weight 𝜎 ∶ {0, 1} → ℝ is a nonnegative
function with 𝜎(0) + 𝜎(1) ≠ 0, then by using variational
characterizations discussed above, we also obtain exactly
two positive eigenvalues

𝜇1 = inf
ᵆ∈𝐻1
𝑢≠0

∫1
0 |(𝑢′)2 + 𝑐(𝑥)𝑢2

𝜎(0)𝑢2(0) + 𝜎(1)𝑢2(1)

and

𝜇2 = inf
ᵆ∈𝑊
𝑢≠0

∫1
0 |(𝑢′)2 + 𝑐(𝑥)𝑢2

𝜎(0)𝑢2(0) + 𝜎(1)𝑢2(1) ,

where 𝑊 = {𝑢 ∈ 𝐻𝜍(Ω) ∶ (𝑢, 𝜑1)𝜍 = 𝜎(1)𝜑1(1)𝑢(1) +
𝜎(0)𝜑1(0)𝑢(0) = 0} with 𝜑1 an eigenfunction correspond-
ing to 𝜇1, and ‖𝑢‖𝜍 = [𝜎(0)𝑢2(0)+𝜎(1)𝑢2(1)]1/2. Moreover,
𝜇1 is principal and 𝜇2 is simple with eigenfunction chang-
ing sign.

We notice that in the one-dimensional case the
Steklov spectrum has only two elements whereas in 𝑁-
dimensional case with 𝑁 ≥ 2, the Steklov spectrum is un-
bounded, infinite and discrete.
Linear nonhomogeneous Steklov problem. Consider
the linear nonhomogeneous problem

−Δ𝑢 + 𝑐(𝑥)𝑢 = 0 a.e. in Ω,
𝜕𝑢
𝜕𝜂 = (𝜇𝑘 + 𝜆)𝜎(𝑥)𝑢 + ℎ(𝑥) on 𝜕Ω,

(11)

where ℎ ∈ 𝐿2(𝜕Ω), 𝜇𝑘 is a Steklov eigenvalue of (2), and
𝜆 ∈ ℝ. From the Fredholm alternative theorem [Bre11],
we have that

(i) If 𝜇𝑘 + 𝜆 is not an eigenvalue of (2), then Equation
(11) has a unique solution for every ℎ.

(ii) If 𝜇𝑘 + 𝜆 is an eigenvalue of (2), then Equation (11)
has a solution if and only if ℎ is orthogonal to the
eigenspace associated to (𝜇𝑘 + 𝜆).

Because of the properties of the first eigenvalue 𝜇1, our
analysis will only be focused on the case where 𝜇𝑘 = 𝜇1.
From the above discussion, the Fredholm alternative-type
arguments describe completely the structure of the solu-
tion set of (11).

In what follows, we will be concerned with nonlinear
pertubations of equation (2). We will also analyze the
structure of the solution set in the framework of bifurca-
tion from infinity.
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Problems with Nonlinear Boundary Conditions
Consider a nonlinear pertubation of equation (2) given by

−Δ𝑢 + 𝑐(𝑥)𝑢 = 0 in Ω,
𝜕𝑢
𝜕𝜂 = (𝜇1 + 𝜆)𝜎(𝑥)𝑢 + 𝑔(𝑥, 𝑢) + ℎ(𝑥) on 𝜕Ω.

(12)

Here Ω is a smooth bounded domain in ℝ𝑁 , where 𝑁 ≥ 2.
Although much weaker regularity conditions may be con-
sidered on the data as seen in the previous sections, we
assume for the sake of simplicity and clarity of the pre-
sentation that the coefficient-functions 𝑐 and 𝜎, as well as
the nonhomogenous term ℎ and the nonlinearity 𝑔, are
smooth on their domains of definition, and that 𝑔(𝑥, 𝑢) is
asymptotically sublinear at infinity in 𝑢 uniformly in 𝑥 (see
below). Moreover, we assume that 𝑐 and 𝜎 are nonnegative
with ∫𝜕Ω 𝜎𝑑𝑆 > 0. In addition, 𝜇1 is the first Steklov eigen-
value of equation (2) and the (real) parameter 𝜆 varies in
a neighborhood of zero.

When 𝑔 ≢ 0 is a (genuine) nonlinearity, the structure
of the solution set may be quite different from that of the
nonhomogeneous linear equation (11). Therefore, we will
present some results on the solution set structure; namely,
the location and behavior of the solution set for the non-
linear problem (12) for 𝜆 in a neighborhood of zero (i.e.,
𝜇1+𝜆 in a neighborhood of 𝜇1), and the nonlinearity 𝑔 sat-
isfies some asymptotic conditions. In particular, the exis-
tence of multiple solutions with (potentially) large norms.

By a solution to Eq.(12)wemean a function 𝑢 ∈ 𝑊2
𝑝 (Ω),

𝑝 > 𝑁, which satisfies (12). (For the definitions and
properties of the Sobolev spaces 𝑊𝑘

𝑝 (Ω), (Sobolev) trace-
spaces𝑊𝑘−𝑝

𝑝 (𝜕Ω) and Hölder spaces 𝐶0,𝛾(𝜕Ω), we refer for
instance to [Bre11].)

The nonlinear problem (12) has received much atten-
tion in recent years. A few results on a disk (𝑁 = 2) were
obtained in the case of linear elliptic equations where the
nonlinearity on the boundary was compared with the first
Steklov eigenvalue. We refer to Klingelhöfer [Kli68]. The
results in [Kli68] were significantly generalized to higher
dimensions in [Ama76] in the framework of the sub- and
super-solutions method.

Let us mention here that in [MP17], the authors proved
multiplicity results for weak solutions (in𝐻1(Ω)) for prob-
lems somewhat similar to (12) by using a priori estimates
and bifurcation theory. Their results considered the case
𝑐 ≡ 1. The harmonic function situation, i.e., 𝑐 ≡ 0, was
not included. In [Mav12,MN10] the authors proved the
existence of weak solutions for elliptic equations with non-
linear boundary conditions using variational arguments.

To obtain existence, multiplicity, and bifurcation from
infinity results for equation (12), we impose the following
general conditions on the (boundary) nonlinearity 𝑔 and
the nonhomogeneous term ℎ, and appropriately cast the
problem in an abstract setting.

Conditions on the nonlinearity 𝑔.
(G1) 𝑔 is asymptotically sublinear at infinity in 𝑢, uniformly

in 𝑥; that is, lim|ᵆ|→∞
𝑔(𝑥,ᵆ)
ᵆ

= 0 uniformly in 𝑥 in the
sense that for every 𝜀 > 0 there is a constant 𝑟𝜀 > 0 such
that

|𝑔(𝑥, 𝑢)| ≤ 𝜀|𝑢|
for all 𝑥 ∈ 𝜕Ω and all 𝑢 ∈ ℝ with |𝑢| ≥ 𝑟𝜀.

(G2) 𝑔 satisfies a sign-like condition, i.e., there are functions
𝐴 ∈ 𝐶(𝜕Ω) and 𝐵 ∈ 𝐶(𝜕Ω) and constants 𝑟, 𝑅 with
𝑟 < 0 < 𝑅 such that

𝑔(𝑥, 𝑢) ≥ 𝐴(𝑥) for all 𝑥 ∈ 𝜕Ω
and all 𝑢 ∈ ℝ with 𝑢 ≥ 𝑅;

𝑔(𝑥, 𝑢) ≤ 𝐵(𝑥) for all 𝑥 ∈ 𝜕Ω
and all 𝑢 ∈ ℝ with 𝑢 ≤ 𝑟.

Conditions on the nonhomogeneous function ℎ. The
nonhomogeneous function ℎ satisfies the orthogonality-
like conditions

(H)

∫
𝜕Ω

𝐵(𝑥)𝜑1 ≤ −∫
𝜕Ω

ℎ(𝑥)𝜑1 ≤ ∫
𝜕Ω

𝐴(𝑥)𝜑1, (13)

We would like to mention that the sublinearity condi-
tion (G1) guarantees the existence of unbounded branches
of solutions when the parameter 𝜆 approaches zero. These
branches bifurcate from infinity in the sense of Rabi-
nowitz; see [Rab73]. Conditions (G2) and (H) are used
in connection with the so-called Landesman–Lazer reso-
nance conditions.
Problem framework. We set up problem (12) in terms
of the normal derivative trace equation on the boundary,
and Nemytskı̌i operators on trace-spaces. More specifi-
cally, we cast the problem as a nonlinear first-order differ-
ential equation “through” the boundary sub-manifold 𝜕Ω
(i.e., a normal derivative trace equation) along with homo-
geneous linear second-order partial differential equations
(diffusion-type) “constraint” inside the domain Ω. Since
the regularity conditions on the data may be significantly
weakened as aforementioned, we indicate how we set up
the problem in terms of Sobolev spaces.

We define the linear (Steklov) boundary operator

ℬ ∶ Dom(ℬ) ⊂ 𝑊1−1/𝑝
𝑝 (𝜕Ω) → 𝑊1−1/𝑝

𝑝 (𝜕Ω) by

ℬ𝑢 ≔ 𝜕𝑢
𝜕𝜈 − 𝜇1𝜎(𝑥)𝑢,

where 𝑋 ≔ Dom(ℬ) = {𝑢 ∈ 𝑊2
𝑝 (Ω) ∶ −Δ𝑢 + 𝑐(𝑥)𝑢 =

0 a.e. in Ω}.
Since 𝑋 ⊂ 𝑊2

𝑝 (Ω), we write symbolically 𝑊2
𝑝 (Ω)

c
↪

𝑊1−1/𝑝
𝑝 (𝜕Ω) to simply mean that the trace-extension oper-

ator 𝑊2
𝑝 (Ω) ↪ 𝑊2−1/𝑝

𝑝 (𝜕Ω) ⋐ 𝑊1−1/𝑝
𝑝 (𝜕Ω) is a compact

linear operator from 𝑊2−1/𝑝
𝑝 (𝜕Ω) into 𝑊1−1/𝑝

𝑝 (𝜕Ω) (see,
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e.g., [Bre11] and references therein). Notice also that the
second-order differential equation defines (or more pre-
cisely is included as a “constraint” in) the domain of the
linear (boundary) operator ℬ, and that 𝑋 is a closed sub-
space of𝑊2

𝑝 (Ω).
Now, we define the nonlinear (Nemytskı̌i)

superposition-operator

𝒩 ∶ 𝑋 ⊂ 𝑊1−1/𝑝
𝑝 (𝜕Ω) → 𝑊1−1/𝑝

𝑝 (𝜕Ω) by

𝒩𝑢 = 𝑔(⋅, 𝑢(⋅)).
Eq.(12) is then equivalent to

ℬ𝑢 = 𝜆𝜎(⋅)𝑢 +𝒩𝑢 + ℎ, 𝑢 ∈ 𝑋. (14)

This abstract set up on the trace-spaces together with a
combination of degree theory (see, e.g., [Maw79]), contin-
uation methods, and Rabinowitz bifurcation from infinity
arguments [Rab73] are used to establish the existence and
multiplicity of solutions and to provide the location and
the behavior of the solution sets.

In order to apply degree theory, one should establish
at least an a priori bound for all possible solutions to a
homotopy associated with Eq. (12); see below.

Proposition 1 (a priori estimate). Assume that the assump-
tions (G1)–(G2) and (H) hold true. Let 𝜆0 ∈ ℝ be a fixed
constant such that 0 < 𝜆0 < 𝜇2 −𝜇1. Then, there is a constant
𝑅0 ≔ 𝑅0(𝜆0) > 0 such that all possible solutions of Eq.(12),
with 0 < 𝜆 ≤ 𝜆0, satisfy

|𝑢|𝑊2𝑝(Ω) ≤ 𝑅0.

That is, all possible solutions of Eq.(12) are (uniformly)
bounded in 𝑊2

𝑝 (Ω) independently of 𝜆, provided 0 < 𝜆 ≤ 𝜆0.
Let us mention that a similar result holds for all 𝜆 negative

(and bounded away from zero). More precisely, we have the
following uniform a priori bound.

Proposition 2 (a priori estimate). Let 𝜆0, 𝜆1 ∈ ℝ be (fixed
negative) constants such that −∞ < 𝜆0 < 𝜆1 < 0. Suppose
that the assumptions (G1) holds. Then there exists a constant
𝑅0 ≔ 𝑅0(𝜆0, 𝜆1) > 0 such that all possible solutions of Eq.(12),
with 𝜆0 ≤ 𝜆 ≤ 𝜆1, satisfy

|𝑢|𝑊2𝑝(Ω) ≤ 𝑅0.

That is, all possible solutions of Eq.(2) are (uniformly) bounded
in 𝑊2

𝑝 (Ω) independently of 𝜆, provided that 𝜆0 ≤ 𝜆 ≤ 𝜆1 < 0.

Existence of solutions.

Theorem 1 (Existence). Assume that the assumption (G1)–
(G2) and (H) hold, then Eq.(12) has at least one solution for
every 𝜆 < 𝜇2 − 𝜇1.

Moreover, for 0 < 𝜆 ≤ 𝜆0, with 𝜆0 < 𝜇2 − 𝜇1, all solutions
are uniformly bounded in 𝑊2

𝑝 (Ω), independently of 𝜆.

To prove Theorem 1, we first consider the case when
𝜆 ≥ 0 is fixed. Picking 𝛿 ∈ ℝ such that 0 < 𝛿 < 𝜇2−𝜇1, and
following the notation of the previous section, we consider
the homotopy

ℬ𝑢 − 𝛿𝜎(⋅)𝑢 = 𝜃[(𝜆 − 𝛿)𝜎(⋅)𝑢 +𝒩𝑢 + ℎ], 𝑢 ∈ 𝑋, (15)

where 𝜃 ∈ [0, 1); which, when 𝜃 = 0, reduces to the homo-
geneous linear problem ℬ𝑢− 𝛿𝜎(⋅)𝑢 = 0 that has only the
trivial solution. (It would reduce to our original nonlinear
problem (12) if 𝜃 were equal to 1.) Since the linear opera-
tor ℬ − 𝛿𝜎(⋅)𝐼 defined by ℬ − 𝛿𝜎(⋅)𝐼 ∶ 𝑋 → 𝑊1−1/𝑝

𝑝 (𝜕Ω) is
bounded, one-to-one and onto (by the continuity of the
trace operator and the Fredholm alternative), it follows
that (15) is equivalent to the fixed point homotopy

𝑢 = 𝜃(ℬ − 𝛿𝜎(⋅)𝐼)−1 ((𝜆 − 𝛿)𝜎(⋅)𝐼𝑢 +𝒩𝑢 + ℎ) , (16)

𝑢 ∈ 𝑋 ≔ Dom(ℬ). Therefore, by the compactness of the

trace operator 𝑊2
𝑝 (Ω)

c
↪ 𝑊1−1/𝑝

𝑝 (𝜕Ω) and the topological
degree theory (see, e.g., [Maw79]), it suffices to show that
all possible solutions of the homotopy (16) are bounded
in𝑊2

𝑝 (Ω), independently of 𝜃 ∈ [0, 1), in order to conclude
that Eq.(16) has at least one solution for 𝜃 = 1 as well.

Indeed, observing that 0 < (1 − 𝜃)𝛿 + 𝜃𝜆 ≤ max{𝜆, 𝛿} ≔
𝜆0 < 𝜇2 − 𝜇1 for 0 ≤ 𝜃 < 1, it follows from Proposi-
tion 1 that all possible solutions of Eq.(15) (or equiva-
lently Eq.(16)) are (uniformly) bounded in 𝑊2

𝑝 (Ω) inde-
pendently of 𝜃 ∈ [0, 1). This proves the first part of Theo-
rem 1. The second part of Theorem 1 follows readily from
Proposition 1.

Now, to prove the existence of at least one solution
for 𝜆 < 0 (fixed), we consider the homotopy (15) where
𝛿 < 0 and now 𝜃 ∈ [0, 1]. (Notice that 𝜃 = 1 is included
here.) Observing that 𝜆0 ≔ min{𝜆, 𝛿} ≤ (1 − 𝜃)𝛿 + 𝜃𝜆 ≤
max{𝜆, 𝛿} ≔ 𝜆1 < 0 for 0 ≤ 𝜃 ≤ 1, it follows Proposi-
tion 2 that all possible solutions of Eq.(15) are (uniformly)
bounded in 𝑊2

𝑝 (Ω) independently of 𝜃 ∈ [0, 1]. The exis-
tence of at least one solution for each 𝜃 ∈ [0, 1] follows
from topological degree arguments as above. (It should
be noted that Assumptions (G2 )–(H) do not matter when
𝜆 < 0, at least as far as existence of at least one solution is
concerned.) □

Recall that no multiplicity results occur when 𝑔 ≡ 0 and
either 𝜆 < 0 or 0 < 𝜆 < 𝜇2 − 𝜇1, since the Fredholm alter-
native guarantees uniqueness in this case! We claim that,
by strengthening somewhat either (G2) or (H), we obtain
multiplicity results and more importantly we describe the
behavior of the solution set. The first result is motivated
by the fact that one may allow the equality 𝐴(𝑥) = 𝐵(𝑥)
for 𝑥 ∈ 𝜕Ω in (G2). We would like to point out that, in
this instance, multiplicity may occur only for one value of
𝜆; more precisely at 𝜆 = 0 (even if 𝑔 ≢ 0), with the bi-
furcation branches in the (𝜆, |𝑢|𝐶0,𝛼(𝜕Ω))-plane being only
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(semi-infinite) straight line rays located on the vertical
|𝑢|𝐶0,𝛼(𝜕Ω) -axis, as illustrated in the following remark.

Remark. Consider any (nonlinearity) 𝑔 such that 𝑔(𝑥, 𝑢) =
0 for all 𝑥 ∈ 𝜕Ω and 𝑢 ∈ ℝ with |𝑢| ≥ 𝑅, where 𝑅 > 0 is a
fixed number; i.e., the function 𝑔 vanishes outside a “cylin-
drical shell” 𝜕Ω × [−𝑅, 𝑅]. For 𝜆 = 0, it is easily seen that
the function defined by 𝑢𝑡 ≔ 𝑡𝜑1 is a solution to Eq.(12)
for every 𝑡 ∈ ℝ that is such that |𝑡|min𝜕Ω{𝜑1(𝑥)} ≥ 𝑅; pro-
vided the nonhomogeneous term ℎ ≡ 0 of course. An
analysis of the proof of the above existence result (or the
multiplicity results below) will indicate that, provided ℎ is
𝐿2(𝜕Ω)-orthogonal to 𝜑1, 𝜆 = 0 is the only parameter-value
for which large solutions exist, and the bifurcation from
infinity branches are (semi-infinite) straight line rays on
the |𝑢|𝐶0,𝛼(𝜕Ω) -axis in the (𝜆, |𝑢|𝐶0,𝛼(𝜕Ω))-plane, as described
above. Therefore, the bifurcation from infinity parameter-
interval collapses to just one-point interval {𝜆} = {0}.

Therefore, for the rest of the article, we will be interested
in nonlinearities 𝑔 that satisfy a sign-like condition and
that are not identically null outside a compact 𝑢-interval
in ℝ.
Bifurcation from infinity. In addition to a (fairly) general
existence result (see Theorem 1 above), our multiplicity
results state that as long as the nonlinearity 𝑔 satisfies a
condition asymptotically, then when 𝜆 is in an appropri-
ate interval on one side of zero, Eq.(12) has at least two
(large-norm) solutions, provided ℎ is in an appropriate
range. Moreover, all solutions with 𝜆 on the other side (of
zero) are uniformly bounded. In this way, we locate the so-
lution set and describe its behavior in terms of bifurcation
from infinity as the parameter 𝜆 varies. Our asymptotic
conditions include the so-called “very strong resonance”
(see Theorem 2 below); i.e., 𝑔 → 0 as |𝑢| → ∞ at 𝜆 = 0,
and no “decay-rate” at infinity is required; “standard reso-
nance” (see Theorem 3) such as the so-called Landesman–
Lazer-type conditions (i.e., 𝑔 ↛ 0 as |𝑢| → ∞).

Definition. We say that (𝜆∞,∞) is a bifurcation point
from infinity (on the the boundary) if there exists a se-
quence of solutions (𝜆𝑛, 𝑢𝑛) such that 𝜆𝑛 → 𝜆∞ and
|𝑢𝑛|𝐶0,𝛼(𝜕Ω) →∞ as 𝑛 → ∞.

Theorem 2 (Bifurcation from infinity). Assume that condi-
tion (G1) is met, and that (G2) holds on 𝜕Ω with strict inequal-
ities; that is, there are functions 𝐴, 𝐵 ∈ 𝐶(𝜕Ω) and constants
𝑟 < 0 < 𝑅 such that

(SS)

𝑔(𝑥, 𝑢) > 𝐴(𝑥) for all 𝑥 ∈ 𝜕Ω
and all 𝑢 ∈ ℝ with 𝑢 ≥ 𝑅;

𝑔(𝑥, 𝑢) < 𝐵(𝑥) for all 𝑥 ∈ 𝜕Ω
and all 𝑢 ∈ ℝ with 𝑢 ≤ 𝑟.

Provided (H) holds, (0,∞) is a bifurcation point from in-
finity; that is, there is a constant 𝜆− < 0 such that for

every 𝜀 ∈ (0, |𝜆−|) Eq.(12) has at least two solutions, denoted
(𝜆+𝜀 , 𝑢𝜀) and (𝜆−𝜀 , 𝑣𝜀), with −𝜀 < 𝜆±𝜀 < 0 such that for some
0 < 𝛼 < 1,

lim
𝜀→0+

min {|𝑢𝜀|𝐶0,𝛼(𝜕Ω) , |𝑣𝜀|𝐶0,𝛼(𝜕Ω)} = ∞;

that is, they bifurcate from infinity since 𝜆±𝜀 → 0 as 𝜀 → 0+.
Moreover, for 0 ≤ 𝜆 ≤ 𝜆0 with 𝜆0 < 𝜇2 − 𝜇1, all solu-

tions (which exist by Theorem 1) are uniformly bounded, inde-
pendently of 𝜆. Therefore, bifurcation from infinity occurs only
(strictly) to the left of the eigenvalue 𝜇1. (In some sense, the
“strong resonance” conditions “bend” the bifurcation branches;
see Figure 1 below.)

A simple example to keep in mind here is the (continu-
ous) function 𝑔 given by 𝑔(𝑥, 𝑢) ≔ 𝜂+(𝑥)(1 + 𝑢2)−1 for 𝑢 ≥
𝑅 > 0 and 𝑔(𝑥, 𝑢) ≔ −𝜂−(𝑥)(1+𝑢2)−1 for 𝑢 ≤ −𝑟 < 0, where
𝜂± are smooth positive functions on 𝜕Ω, or a nonbounded
counterpart 𝑔(𝑥, 𝑢) ≔ 3√𝑢 sin2(𝑢) ± 𝜂±(𝑥)(1 + 𝑢2)−1. No-
tice that here, 𝐴(𝑥) = 𝐵(𝑥) = 0; which by (H) requires
ℎ to be 𝐿2(𝜕Ω)-orthogonal to 𝜑1. Observe that in either
case lim infᵆ→∞ 𝑔(𝑥, 𝑢) = 0 = lim supᵆ→−∞ 𝑔(𝑥, 𝑢) and
lim infᵆ→∞ 𝑢𝑔(𝑥, 𝑢) = 0 = lim supᵆ→−∞ 𝑢𝑔(𝑥, 𝑢); that is,
no (linear) “decay rate” at infinity is required (see, e.g.,
[AA95] and references therein). Thus, the terminology (as-
ymptotic) strong resonance used here! We also point out
that the so-called Landesman–Lazer condition (LL) (see
below) is not satisfied for these nonlinearities since one
has equalities in (H), but we are still able to “locate” and
“describe” the solution-branches.

Note that the “stronger” condition (SS) may be used
to establish that all possible solutions of Eq.(14) are (uni-
formly) bounded in 𝑊2

𝑝 (Ω) when 𝜆 = 0 as well; that is,
the conclusion of Theorem 1 actually holds true for all
𝜆 ∈ [0, 𝜆0].

To prove Theorem 2, we consider the fixed point equa-
tion

𝑢 = 𝜃(ℬ − 𝛿𝜎(⋅)𝐼)−1 ((𝜆 − 𝛿)𝜎(⋅)𝐼𝑢 +𝒩𝑢 + ℎ) . (17)

Setting

𝜇 ≔ 𝜆 + 𝛿, 𝐿𝑢 ≔ [(ℬ + 𝛿𝜎(⋅)𝐼)−1𝜎(⋅)𝐼]𝑢
and

𝐾𝑢 ≔ (ℬ + 𝛿𝜎(⋅)𝐼)−1 (𝒩𝑢 + ℎ) ,
it follows that the above fixed point equation is equivalent
to the nonlinear “normal derivative trace” equation

𝑢 = 𝜇𝐿𝑢 + 𝐾(𝑢), 𝑢 ∈ 𝐶0,𝛼(𝜕Ω), 0 < 𝛼 < 1. (18)

From this setup, it follows that 𝜇−1 = 𝛿−1, i.e., 𝜆 = 0, is
the principal eigenvalue of 𝐿 and that, by the compactness
of the trace operator, the solution-map (through the use
of the “bootstrap” regularity argument as above)

𝐿 ∶ 𝐶0,𝛼(𝜕Ω) → 𝐶1,𝛼𝛾(Ω)
c
↪ 𝐶0,𝛼(𝜕Ω)
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is a compact linear operator when considered as an opera-
tor from 𝐶0,𝛼(𝜕Ω) into 𝐶0,𝛼(𝜕Ω). Using the regularity of 𝑔
and ℎ and a “bootstrap” argument again one shows that

𝐾 ∶ 𝐶0,𝛼(𝜕Ω)
c
↪ 𝐶0,𝛼(𝜕Ω)

is a completely continuous mapping when viewed as a
nonlinear operator from 𝐶0,𝛼(𝜕Ω) into 𝐶0,𝛼(𝜕Ω). Then us-
ing the sublinear growth condition (G1), one can show
that 𝐾(𝑢) = o(|𝑢|𝐶0,𝛼(𝜕Ω)) as |𝑢|𝐶0,𝛼(𝜕Ω) → ∞. Notice
that Eq.(18) has now an abstract form considered, e.g., in
[Rab73] for bifurcation from infinity purposes. Therefore,
𝜆 = 0 is a bifurcation point from infinity since all assump-
tions of the bifurcation from infinity result are fulfilled
(see, e.g., [Rab73, p. 465, Theorem 1.6 and Corollary 1.8];
that is, there exist two connected sets of solutions𝒞+, 𝒞− ⊂
ℝ×𝐶0,𝛼(𝜕Ω)with𝒞+∩𝒞− = ∅which are such that for every
(sufficiently) small 𝜀 > 0, 𝒞+ ∩ 𝑈𝜀 ≠ ∅, 𝒞− ∩ 𝑈𝜀 ≠ ∅ where
𝑈𝜀 ≔ {(𝜆, 𝑢) ∈ ℝ × 𝐶0,𝛼(𝜕Ω) ∶ |𝜆| < 𝜀, |𝑢|𝐶0,𝛼(𝜕Ω) > 1/𝜀}.
(Observe that, by the regularity of solutions, 𝑢 ∈
𝐶0,𝛼(𝜕Ω) ∩ 𝑋 since it is a solution of the fixed point equa-
tion (18).) Since all solutions are uniformly bounded in
𝑊2
𝑝 (Ω) for all 𝜆 ∈ [0, 𝜆0] with 𝜆0 < 𝜇2 − 𝜇1 (see Propo-

sition 1 and the bound in the case 𝜆 = 0) and for all
𝜆 ∈ [𝜆0, 𝜆1] with 𝜆1 < 0, there therefore exists a deleted
left-neighborhood of 0 in ℝ; i.e., there is 𝜆− < 0, such that
for every 𝜀 > 0 with 𝜀 < |𝜆−|, there are two distinct solu-
tions (𝜆+𝜀 , 𝑢𝜀) ∈ 𝐶+ and (𝜆−𝜀 , 𝑣𝜀) ∈ 𝐶− with −𝜀 < 𝜆±𝜀 < 0,
𝑢𝜀 ≠ 𝑣𝜀, and min {|𝑢𝜀|𝐶0,𝛼(𝜕Ω), |𝑣𝜀|𝐶0,𝛼(𝜕Ω)} > 1/𝜀. It fol-
lows that 𝜆±𝜀 → 0 and min {|𝑢𝜀|𝐶0,𝛼(𝜕Ω), |𝑣𝜀|𝐶0,𝛼(𝜕Ω)} → ∞
as 𝜀 → 0+.
Theorem 3 (Bifurcation from infinity). Assume that (G1)–
(G2) hold and that

(LL)∫
𝜕Ω

𝑔−(𝑥)𝜑1 < −∫
𝜕Ω

ℎ(𝑥)𝜑1 < ∫
𝜕Ω

𝑔+(𝑥)𝜑1, (19)

where 𝑔+(𝑥) ≔ lim infᵆ→∞ 𝑔(𝑥, 𝑢) and
𝑔−(𝑥) ≔ lim supᵆ→−∞ 𝑔(𝑥, 𝑢).

Then (0,∞) is a bifurcation point from infinity; that is, the
conclusion of Theorem 2 holds.

In the above result we strengthen “a little bit” the con-
dition (H) by requiring strict inequalities while keeping
(G2) as it is given. This is the so-called Landesman–Lazer-
type conditions; which was considered in the literature in
some other setting. To show that all possible solutions of
Eq.(14) are (uniformly) bounded in 𝑊2

𝑝 (Ω) when 𝜆 = 0,
we use the Landesman–Lazer condition (LL) and Fatou’s
lemma. Then proceed as in the proof of Theorem 1.

A simple example to keep in mind here is the (smooth)
function 𝑔 (independent of 𝑥) given by 𝑔(𝑢) ≔ 𝜂± tanh(𝑢)
for |𝑢| ≥ 𝑅 > 0 with 𝜂+ > 0 applying when 𝑢 > 𝑅 and
𝜂− > 0 applying when 𝑢 < −𝑅, or a nonbounded coun-

terpart 𝑔(𝑢) ≔ 3√𝑢 sin2(𝑢) + 𝜂± tanh(𝑢) for |𝑢| ≥ 𝑅 > 0.

λ− λμ2 − μ1

|u|C0,α(∂Ω)

|uε|C0,α(∂Ω)

|vε|C0,α(∂Ω)

Figure 1. Bifurcation diagram in the case of a “strong
resonance” nonlinearity.

Notice that in either case lim infᵆ→∞ 𝑔(𝑢) = 𝜂+ and
lim supᵆ→−∞ 𝑔(𝑢) = −𝜂− . Therefore the nonhomogeneous
term ℎ has to satisfy the strict inequalities

−𝜂− ∫
𝜕Ω

𝜑1 < −∫
𝜕Ω

ℎ(𝑥)𝜑1 < 𝜂+ ∫
𝜕Ω

𝜑1.

Another aspect that we have not considered here, due
in part to space limitation, but which is nonetheless im-
portant is the numerical analysis and simulation for these
problems.
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Norm. Sup. (3) 19 (1902), 455–490. MR1509018

Nsoki Mamie
Mavinga

Credits

Opening image (of Steklov eigenfunctions) is courtesy of
Chiu-Yen Kao.

Figure 1 is courtesy of Nsoki Mamie Mavinga.
Photo of Nsoki Mamie Mavinga is courtesy of Stephanie

Specht.

222 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 2

https://doi.org/10.1081/NFA-120039655
https://doi.org/10.1016/j.jde.2006.08.018
https://doi.org/10.1137/16M1058704
https://doi.org/10.1016/j.jmaa.2014.08.015
https://doi.org/10.1007/BF00251418
https://doi.org/10.1137/S0036141096310144
https://doi.org/10.1137/S0036139996308121
https://doi.org/10.1016/j.jde.2017.09.014
https://doi.org/10.1017/S0308210510000065
https://doi.org/10.1016/j.jde.2009.10.005
https://doi.org/10.1016/0022-0396(73)90061-2
https://doi.org/10.1137/1009070
https://doi.org/10.1017/S0308210516000251
http://www.ams.org/mathscinet-getitem?mr=3656708
http://www.ams.org/mathscinet-getitem?mr=218975
http://www.ams.org/mathscinet-getitem?mr=328705
http://www.ams.org/mathscinet-getitem?mr=1509018
http://www.ams.org/mathscinet-getitem?mr=2072072
http://www.ams.org/mathscinet-getitem?mr=572958
http://www.ams.org/mathscinet-getitem?mr=2759829
http://www.ams.org/mathscinet-getitem?mr=2287906
http://www.ams.org/mathscinet-getitem?mr=3542029
http://www.ams.org/mathscinet-getitem?mr=3918372
http://www.ams.org/mathscinet-getitem?mr=235140
http://www.ams.org/mathscinet-getitem?mr=1617692
http://www.ams.org/mathscinet-getitem?mr=1637882
http://www.ams.org/mathscinet-getitem?mr=3712947
http://www.ams.org/mathscinet-getitem?mr=2887646
http://www.ams.org/mathscinet-getitem?mr=525202
http://www.ams.org/mathscinet-getitem?mr=2592886
http://www.ams.org/mathscinet-getitem?mr=3263445

