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1. Introduction
Recent years have seen explosive progress in data-driven
artificial intelligence (AI) systems. Many decades of the
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development of mathematics underpinning statistical
learning theory coupled with advancements in approxima-
tion theory, numerical analysis, technology, and comput-
ing gave rise to new-generation AI transforming our life.
These systems show great promise in cancer diagnostics
[MSG+20], they are a part of autonomous cars [22], au-
tomated face recognition and biometrics [KE21], image
segmentation [SBKV+20], language processing and trans-
lation tools [DZS+22], and as such become our new re-
ality. Availability of unprecedented volumes of data, citi-
zens’ expectations and participation are further driving this
change.
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New reality, however, brings new challenges. Uncer-
tainties and biases are inherent within any empirical data.
They enter production pipelines of data-driven AI and rip-
ple through them causing errors. AI instabilities and ad-
versarial examples—errors due to minor changes in data
or structure—have recently been found in many advanced
data-driven AI models. Moreover, mounting evidence sug-
gests that these errors are in fact expected in such systems
[THG20] and may not always be cured by larger volumes
of data or better training algorithms [BHV21] as long as
the AI architecture remains fixed.

This leads to the following question: if errors are in-
evitable in data-driven AI then how do we deal with them
once they occur?

One way to address this imminent challenge is to equip
an AI with an “error filter” or “error corrector” [GT18]. The
function of the AI corrector is to learn from errors “on-
the-job,” supplementing the AI’s initial training. Dynamic
addition of AI correctors continuously extends AI architec-
ture, adapts to data uncertainty [GGG+18], and enables AI
to escape the stability barrier revealed in [BHV21]. When a
new data arrives at AI input, the AI error corrector then de-
cides if it is likely to cause an error, and if so, then reports.
To do this, the filter uses some set 𝐼 of attributes, such as,
for example, internal latent representations of the input
in AI decision space. To each attribute 𝑖 ∈ 𝐼, the system
assigns some weight 𝑤𝑖. For each new input, the system
computes numerical values 𝑥𝑖 of all attributes 𝑖 ∈ 𝐼, and
compares the weighted sum ∑𝑖∈𝐼 𝑤𝑖𝑥𝑖 with some thresh-
old 𝑡 to decide whether to report the input as an error.

However, how does the filter determine the weights 𝑤𝑖
of all attributes? To do this, the filter is provided a training
set of example inputs marked as correct and errors. Then
the system tries to find weights 𝑤𝑖 such that, ideally, all
data in the training set are classified correctly. Moreover
the system tries to ensure that all (or a large proportion of)
future “unseen” inputs would be processed correctly too.
In other words, the system seeks to learn the weights from
some training data, and the error filter itself is therefore an
example of a machine learning (ML) system.

Geometrically, any input is described by the values 𝑥𝑖 of
the attributes, and can therefore be represented as a point
𝑥 = (𝑥1, … , 𝑥𝑛) in the 𝑛-dimensional Euclidean space,
where 𝑛 = |𝐼| is the number of attributes. Then the cri-
terion ∑𝑖∈𝐼 𝑤𝑖𝑥𝑖 ≥ 𝑡 for an input being an error defines a
half-space, whose boundary is the hyperplane 𝐻 defined
by the equation ∑𝑖∈𝐼 𝑤𝑖𝑥𝑖 = 𝑡. If we mark points corre-
sponding to errors and correct AI behavior as red and blue,
respectively, the machine learning task of error identifica-
tion reduces to finding a hyperplane that separates the red
points from the blue ones; see Figure 1.

Assume that such hyperplane 𝐻 exists and we have
started to use the filter with the corresponding weights 𝑤𝑖.

Figure 1. Separation of red and blue points by a hyperplane.

Figure 2. Retraining the system by recomputing a hyperplane.

Imagine, however, that a new input has arrived, which the
filter classified as correct but the user marked as an error.
In other words, the filter itself made an error. Of course,
we would like the system to be able to learn from such
errors and improve its performance in the future. An ob-
vious way to do this is to add a new point to the training
set and recompute the weights. This constitutes “retrain-
ing the system.” Geometrically, this means that a new red
point 𝑋 appears on the “wrong” side of the hyperplane, so
that we try to find a different hyperplane that separates all
points correctly; see Figure 2. Obviously, it is not always
possible to find such a hyperplane; see Figure 3. Moreover,
even if it is possible, it may require substantial time to re-
compute all weights every time the filter makes an error.

Alternatively, one may use the following
error-correction method, suggested in [GMT19]: separate
a new red point 𝑋 from the existing blue points by another
hyperplane 𝐻′ given by an equation ∑𝑖∈𝐼 𝑤′

𝑖𝑥𝑖 = 𝑡′; see
Figure 3. After this, classify any new input as error if either
∑𝑖∈𝐼 𝑤𝑖𝑥𝑖 ≥ 𝑡 or ∑𝑖∈𝐼 𝑤′

𝑖𝑥𝑖 ≥ 𝑡′.
A careful reader may have already noticed a limitation

of this approach that appears to be fundamental: why did
we assume that a point can be separated from all other
points by a hyperplane? Obviously, if that point belongs
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Figure 3. Separation of new red point by a different
hyperplane.

Figure 4. A red point not separable by a hyperplane.

to the convex hull1 of other points, then a separating hy-
perplane does not exist and the method does not work;
see Figure 4. For example, even if we have just 3 points
𝑋1, 𝑋2, 𝑋3, then 𝑋3 may lie in the interior of the line in-
terval 𝑋1𝑋2, and in this case it cannot be separated from
𝑋1, 𝑋2.

However, intuitively, the described case is in some sense
“degenerate” and should not happen too often with real
data. The best way to formalise this intuition is to use the
language of probability theory, and ask what is the proba-
bility that the method would work for random data. This
leads to a very nice problem that lies on the borderline of
probability theory and geometry.

Problem 1. Given a set 𝐾 of𝑚 random points inℝ𝑛, what
is the probability that each point 𝑋 ∈ 𝐾 can be separated
from all other points by a hyperplane? Equivalently, what
is the probability that points in 𝐾 are in convex position
(in sense that each point 𝑋 ∈ 𝐾 is a vertex of the convex
hull of 𝐾)?

2. Sylvester’s Problem
Problem 1 has a long history and goes back to at least
the question asked by Sylvester in 1864: given 4 random

1Recall that the convex hull of set 𝐾 ⊂ ℝ𝑛 is the intersection of all convex sets
containing 𝐾.

points 𝑋, 𝑌, 𝑍,𝑊 on the plane, what is the probability 𝑝
that they form a convex quadrilateral?

To address this question, it is convenient to introduce
the following random variables. Let 𝐼𝑋 be the random vari-
able equal to 1 if point 𝑋 is inside the triangle 𝑌𝑍𝑊 and 0
otherwise. Let random variables 𝐼𝑌 , 𝐼𝑍 and 𝐼𝑊 be defined
similarly. Then random variable

𝐼 = 𝐼𝑋 + 𝐼𝑌 + 𝐼𝑍 + 𝐼𝑊
counts the number of points that are inside the trian-
gle formed by other points. Hence, 𝐼 = 0 precisely if
𝑋, 𝑌, 𝑍,𝑊 form a convex quadrilateral, and this happens
with probability 𝑝. With probability 1 − 𝑝, 𝐼 = 1. Thus,
the expected value 𝔼[𝐼] = 0 ⋅ 𝑝 + 1 ⋅ (1 − 𝑝) = 1 − 𝑝, and
𝑝 = 1 − 𝔼[𝐼].

This implies that to find 𝑝 it suffices to find 𝔼[𝐼].
From the linearity of the expectation, and assuming that
𝑋, 𝑌, 𝑍,𝑊 are drawn independently from the same distri-
bution,

𝔼[𝐼] = 𝔼[𝐼𝑋] + 𝔼[𝐼𝑌 ] + 𝔼[𝐼𝑍] + 𝔼[𝐼𝑊 ] = 4𝔼[𝐼𝑋].
Next, 𝐼𝑋 is a random variable that takes values 0 or 1, and

𝔼[𝐼𝑋] = 0 ⋅ (1 − 𝑝𝑋) + 1 ⋅ 𝑝𝑋 = 𝑝𝑋 ,
where 𝑝𝑋 is the probability that 𝑋 lies inside triangle 𝑌𝑍𝑊 .

If points 𝑋, 𝑌, 𝑍,𝑊 are selected independently and uni-
formly at random from the unit disk 𝔻, then by the law of
total expectation,

𝔼[𝐼𝑋] = 𝔼[𝔼[𝐼𝑋 |𝑌 , 𝑍,𝑊]] = 𝔼 [𝐴(𝑌𝑍𝑊)
𝐴(𝔻) ]

where 𝐴 denotes the area. Hence, the problem reduces
to determining the expected area of the triangle 𝑌𝑍𝑊 . In
1867, Woolhouse determined that

𝔼 [𝐴(𝑌𝑍𝑊)
𝐴(𝔻) ] = 35

48𝜋2 ,

hence

𝑝 = 1 − 𝔼[𝐼] = 1 − 4𝔼[𝐼𝑋] = 1 − 35
12𝜋2 = 0.704… .

Of course, random points can be selected inside regions
different from a disk. Sylvester also asked the same ques-
tion in the following modified form. Let 𝑆 be a convex
body in the plane (that is, a compact convex set with non-
empty interior) and choose four points from 𝑆 indepen-
dently and uniformly at random. What is the probability
𝑝(4, 𝑆) that these points are the vertices of a convex quadri-
lateral? Further, for what 𝑆 is this probability the smallest
and the largest? The second question has been solved by
Blaschke, who proved in 1917 that for all convex bodies 𝑆,
2
3 = 𝑝(4, 𝕋) ≤ 𝑝(4, 𝑆) ≤ 𝑝(4, 𝔻) = 1 − 35

12𝜋2 = 0.704… ,

where 𝕋 and 𝔻 denotes a triangle and a disk in the plane,
respectively.
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Sylvester’s question can be asked for 𝑚 points: if they
are selected uniformly at random in a convex body 𝑆 in
the plane, what is the probability 𝑝(𝑚, 𝑆) that they form a
convex 𝑚-gon?

In 1995, Valtr solved this problem exactly for a parallel-
ogram 𝕃, and proved that

𝑝(𝑚, 𝕃) = (
(2𝑚−2
𝑚−1

)
𝑚! )

2

.

In 1996, Valtr also solved this problem for triangle 𝕋, and
showed that

𝑝(𝑚, 𝕋) = 2𝑚(3𝑚 − 3)!
(𝑚 − 1)!3 (2𝑚)! .

Using Stirling’s approximation for the factorial, it is
straightforward to prove that

lim
𝑚→∞

(𝑚2𝑚√𝑝(𝑚, 𝕋)) = 27
2 𝑒

2.

Because any convex body 𝑆 in the plane can be sandwiched
between two triangles, this implies the existence of univer-
sal constants 0 < 𝑐1 < 𝑐2 < ∞ such that

𝑐1 ≤ 𝑚2𝑚√𝑝(𝑚, 𝑆) ≤ 𝑐2
for all 𝑚 and all 𝑆. In fact, Bárány [Bár99] proved in 1999
that

lim
𝑚→∞

(𝑚2𝑚√𝑝(𝑚, 𝑆)) = 𝑐(𝑆)

for some constant 𝑐(𝑆) that depends on 𝑆. For example,
𝑐(𝕃) = 16𝑒2 for parallelogram, 𝑐(𝕋) = 27

2
𝑒2 for triangle, and

𝑐(𝔻) = 2𝜋2𝑒2 for disk. In particular,

𝑝(𝑚,𝔻) ≈ (2𝜋
2𝑒2
𝑚2 )

𝑚
.

approaches 0 as 𝑚 → ∞ with super-exponential speed.
Can we have the exact (non-asymptotic) formulas for

𝑝(𝑚,𝔻)? In 1971, Miles derived the exact formula for
𝑝(5, 𝔻):

𝑝(5, 𝔻) = 1 − 305
48𝜋2 = 0.356… .

Finally, Marckert in 2017 derived exact (but somewhat
complicated) formulas for 𝑝(𝑚,𝔻) for an arbitrary 𝑚. For
example, for 𝑚 = 6,

𝑝(6, 𝔻) = 1 − 305
24𝜋2 −

473473
11520𝜋4 = 0.134… .

The following table lists numerical values for 𝑝(𝑚, 𝕋),
𝑝(𝑚, 𝕃) and 𝑝(𝑚,𝔻) for 4 ≤ 𝑚 ≤ 7.

𝑚 4 5 6 7
𝑝(𝑚, 𝕋) 0.666… 0.305… 0.101… 0.0251…
𝑝(𝑚, 𝕃) 0.694… 0.340… 0.122… 0.0336…
𝑝(𝑚,𝔻) 0.704… 0.356… 0.134… 0.039…

As expected, we see that the probabilities decrease fast even
for small values of 𝑚. This is bad news for our machine
learning application, because it shows that new points will
most likely be in the convex hull of other points. How-
ever, all these results are in the plane, which corresponds to
a (toy) machine learning system with just two attributes.
Any realML systemhas significantlymore attributes, hence
we should study Problem 1 in higher-dimensional spaces.
In the next section we show that separability properties of
random points in higher dimensions are dramatically dif-
ferent from those computed for our low-dimensional ex-
ample.

3. The Effect of Higher Dimension
We start our analysis of Problem 1 in higher dimensions
with a simple special case. Let 𝔹𝑛 be the closed unit ball in
ℝ𝑛. We first consider the case when points 𝑋1, … , 𝑋𝑚 ∈ 𝔹𝑛
are fixed, and 𝑌 ∈ 𝔹𝑛 is selected uniformly at random in
𝔹𝑛. In 1986, Elekes [Ele86] proved that for any 𝑚 points
𝑋1, … , 𝑋𝑚 ∈ 𝔹𝑛, we have

Vol(conv(𝑋1, … , 𝑋𝑚))
Vol(𝔹𝑛)

≤ 𝑚
2𝑛 , (1)

where conv is the convex hull, and Vol denotes the 𝑛-
dimensional volume. This implies that 𝑌 can be separated
from 𝑋1, … , 𝑋𝑚 by a hyperplane with probability at least
1 − 𝑚/2𝑛. This probability is greater than 1 − 𝛿 provided
that 𝑚/2𝑛 < 𝛿, or

𝑚 < 𝛿2𝑛. (2)

Now assume that we select𝑚 points independently and
uniformly at random in 𝔹𝑛. Let 𝐸𝑖 be the event that the
point 𝑋𝑖 is inside the convex hull of the remaining points.
Then Elekes’s theorem implies that the probability of 𝐸𝑖 is
at most (𝑚 − 1)2−𝑛, and the probability of the event 𝐸 =
⋃𝑚

𝑖=1 𝐸𝑖 is at most 𝑚(𝑚 − 1)2−𝑛 < 𝑚22−𝑛. Hence with
the probability greater than 1 − 𝑚22−𝑛 every point 𝑋𝑖 is
separable by a hyperplane from the remaining points. This
probability is greater than 1 − 𝛿 if 𝑚22−𝑛 < 𝛿, or

𝑚 < √𝛿(√2)𝑛. (3)

The upper bound (3) was originally proved by Bárány
and Füredi in 1988. Complementing this result, Bárány
and Füredi also proved that, for all 𝑛 ≥ 100, the probability
that

𝑚 = 20𝑛3/4(√2)𝑛
independent uniformly distributed points in 𝔹𝑛 are all ver-
tices of their convex hull is less than 2𝑒−10. Hence, the
bound (3) is quite tight. In particular, the result is no
longer true if (√2)𝑛 in (3) is replaced by (√2 + 𝜖)𝑛 for any
𝜖 > 0.

The following table shows, in various dimensions 𝑛, the
upper bounds for𝑚 in (2) and (3) with 𝛿 = 0.01, ensuring
the separability with 99% probability.
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𝑛 Upper bound in (2) Upper bound in (3)
10 10.24 3.2
30 1.07 ⋅ 107 3276
50 1.12 ⋅ 1013 3.35 ⋅ 106
100 1.26 ⋅ 1028 1.12 ⋅ 1014

We see that in dimension 𝑛 = 30, a random point is
separable from millions of other points with probability
over 99%, and thousands of random points are all separa-
ble. In dimension 𝑛 = 50, millions of points all become
separable. In other words, if we select 3million uniformly
random points in ball 𝐵50 ⊂ ℝ50, then with probability
over 99% they are all vertices of their convex hull. This
observation is in sharp contrast with our low-dimensional
intuition.

This effect is not limited to the uniform distribution in
the unit ball 𝔹𝑛. In fact, when we say “uniform distribu-
tion in the unit ball,” we actually mean a family of distribu-
tions, one for each dimension: the uniform distribution
on the interval [−1, 1] in ℝ1, the uniform distribution in
the the disk {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥2+𝑦2 ≤ 1} inℝ2, and so on. In
the theorems below, the dimension will not be fixed but
will be a variable, and in this case we need to consider a
family

ℙ = {ℙ1, … , ℙ𝑛, … }
of probability measures, where ℙ𝑛 denotes the probability
measure on ℝ𝑛.

Definition 1. [GGG+18] The family of joint distributions
of points 𝑋1, … , 𝑋𝑚 in ℝ𝑛 has SmAC property if there exist
constants 𝜖 > 0, 𝐴 > 0, and 𝐵 ∈ (0, 1), such that for every
positive integer 𝑛, any convex set 𝑆 ∈ ℝ𝑛 such that

Vol(𝑆)
Vol(𝔹𝑛)

≤ 𝜖𝑛,

any index 𝑖 ∈ {1, 2, … ,𝑚}, and any points
𝑌1, … , 𝑌 𝑖−1, 𝑌 𝑖+1, … , 𝑌𝑚 in ℝ𝑛, we have

ℙ(𝑋𝑖 ∈ 𝔹𝑛 ⧵ 𝑆 ∣ 𝑋𝑗 = 𝑌 𝑗 , ∀𝑗 ≠ 𝑖) ≥ 1 − 𝐴𝐵𝑛. (4)

Condition (4) says that, with probability exponentially
close to 1, a random point lies inside the unit ball, but
outside of any convex set of exponentially small volume.
In other words, SmAC property holds for the distributions
without (i) heavy tails and (ii) sharp peaks in sets with ex-
ponentially small volume. Indeed, any bounded or light-
tailed distribution can, after appropriate shift and rescal-
ing, be located essentially inside 𝔹𝑛, while for heavy-tailed
distributions there is a significant probability that 𝑋𝑖 ∉ 𝔹𝑛,
hence (4) fails. The name SmAC is an abbreviation of
“SMeared Absolute Continuity” and comes from analogy
with absolute continuity: the absolute continuity means
that the sets of zero measure have zero probability, and
the SmAC condition requires that convex sets with expo-
nentially small volume should not have high probability.

The theorem below states that if a family of distribu-
tions has the SmAC property, then exponentially many
points are in convex position with high probability.

Theorem 1. [GGG+18] Let {𝑋1, … , 𝑋𝑚} be a set of random
points in ℝ𝑛 from a distribution satisfying the SmAC property.
Let 𝛿 ∈ (0, 1) be fixed. Then there exists constants 𝑎 > 0 and
𝑐 > 1 such that if 𝑚 < 𝑎𝑐𝑛 then points {𝑋1, … , 𝑋𝑚} are in
convex position with probability greater than 1 − 𝛿.

The SmAC condition is very general and holds for a
large variety of distributions. As an illustration, consider
a special case of i.i.d. data. If probability measures ℙ𝑛 in
family ℙ have support in the unit ball 𝔹𝑛 and density 𝜌𝑛,
then the SmAC condition holds provided that

𝜌𝑛(𝑥)
𝜌uni(𝑥)

≤ 𝐶𝑅𝑛, ∀𝑥 ∈ 𝔹𝑛 (5)

where 𝐶 > 0 and 𝑅 > 0 are some constants independent
of the dimension, and 𝜌uni(𝑥) is the density of the uniform
distribution in 𝔹𝑛. In other words, the density 𝜌𝑛(𝑥) is al-
lowed to differ from the uniform density by an exponen-
tially large factor, and the exponent 𝑅 must be a constant
independent of 𝑛 but can be arbitrarily large.

For example, let 𝐴𝑛 be a bounded measurable set in ℝ𝑛.
Then it is not difficult to see that (5) is true for the uniform
distribution in (a possibly scaled and shifted) 𝐴𝑛 provided
that

diam(𝐴𝑛)
𝑛√Vol(𝐴𝑛)

≤ 𝑅√𝑛 (6)

for some constant 𝑅 < ∞. In particular, if 𝐴𝑛 is the unit
cube in ℝ𝑛, then Vol(𝐴𝑛) = 1, diam(𝐴𝑛) = √𝑛, and (6)
holds with 𝑅 = 1. Hence Theorem 1 implies that exponen-
tially many points selected uniformly at random from the
unit cube are in convex position with high probability.

4. Computing Separating Hyperplanes
Under SmAC condition, exponentially many random
points 𝑋1, … , 𝑋𝑚 in ℝ𝑛 are linearly separable with high
probability: for each 𝑖 ∈ 1, … ,𝑚, there exists a hyperplane
𝐻 passing through 𝑋𝑖 such that all other points are on the
same side from 𝐻. If (𝑥𝑗1, … , 𝑥𝑗𝑛) are the coordinates of
point 𝑋𝑗, 𝑗 = 1, … ,𝑚, then we can explicitly find𝐻 by solv-
ing the quadratic program

min
𝑐1,…,𝑐𝑛,𝑣

‖𝑐‖2, subject to (7)

𝑛
∑
𝑘=1

𝑐𝑘𝑥𝑗𝑘 + 𝑣 ≤ −1, 𝑗 ≠ 𝑖;
𝑛
∑
𝑘=1

𝑐𝑘𝑥𝑖𝑘 + 𝑣 = 1.

If 𝑐∗ = (𝑐∗1, … , 𝑐∗𝑛, 𝑣∗) is the solution to (7), then

𝐻 = {(𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 ∶ 1 − 𝑣∗ =
𝑛
∑
𝑘=1

𝑐∗𝑘𝑥𝑘} .

The above program is a version of the well-known
maximal-margin classifier or a support vector machine.
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This quadratic program has 𝑚 constraints and 𝑛 + 1 vari-
ables. Worst-case computational complexity of solving
this problem scales as 𝑂(max(𝑛 + 1,𝑚)min(𝑛 + 1,𝑚)2)
[Cha07]. When 𝑚 is potentially exponentially large in 𝑛,
the worst-case complexity grows exponentially with 𝑛.

The other issue with finding separating hyperplanes
through solving (7) is that this approach requires full
knowledge of all points𝑋𝑗, 𝑗 = 1, … ,𝑚. Whilst such knowl-
edge might be available in some tasks, it is hardly practical
in the task of correcting AI errors. In this context, 𝑋𝑖 repre-
sents an AI “error” that has already been detected and is to
be removed, and 𝑋𝑗, 𝑗 ≠ 𝑖 stand for “correct or expected”
past and possibly future AI behavior. The fact that some
or all 𝑋𝑗 are unknown makes solving (7) hardly possible.
The question, therefore, is:

Problem 2. How to construct 𝐻 separating 𝑋𝑖 from the
remaining points without knowing their positions?

In the next sectionswe show that, for appropriately high
dimension 𝑛 and under some mild assumptions, there are
simple closed-form expressions defining hyperplanes sep-
arating 𝑋𝑖 from 𝑋𝑗, 𝑖 ≠ 𝑗 with probability close to 1.
4.1. One-shot separability: Fisher separability. In order
to develop the intuition for Problem 2, let us return to the
simplest example, when the points are selected uniformly
at random from the 𝑛-dimensional unit ball 𝔹𝑛. Any hy-
perplane𝐻 through𝑋𝑖 divides𝔹𝑛 into pieces with volumes
𝑉1 ≤ 𝑉2. To maximize the chance that hyperplane 𝐻 sepa-
rates 𝑋𝑖 from all other points, we aim to select 𝐻 such that
volume 𝑉1 is the minimal possible. The optimal choice
of 𝐻 is the hyperplane orthogonal to 𝑂𝑋𝑖, where 𝑂 is the
centre of 𝔹𝑛; see Figure 5. If 𝐴 is the event that point 𝑋𝑗
belongs to the piece with volume 𝑉1, then a straighforward
calculation shows that

ℙ(𝐴) = 𝔼[𝐼𝐴] = 𝔼[𝔼[𝐼𝐴|𝑋𝑗]] = 𝔼[𝑅𝑛] = 1
2𝑛+1 , (8)

where 𝐼𝐴 is the indicator function of the event 𝐴, the sec-
ond equality is the law of total expectation, the third equal-
ity follows from the fact that 𝐼𝐴|𝑋𝑗 is equal to 1 if and only
if 𝑋𝑖 belongs to a ball with radius 𝑅 = |𝑂𝑋𝑗|/2, and the last
equality follows from the fact that 𝑅 is a random variable
with cdf ℙ[𝑅 ≤ 𝑟] = ℙ[|𝑂𝑋𝑗| ≤ 2𝑟] = (2𝑟)𝑛, 0 ≤ 𝑟 ≤ 1/2.

Now, if we have𝑚 i.i.d. points from𝔹𝑛, there are𝑚(𝑚−
1) ordered pairs of points. Hence, the probability that we
can find some pair𝑋𝑖, 𝑋𝑗 such that the corresponding event
𝐴 happens is at most 𝑚(𝑚 − 1)2−(𝑛+1) < 𝑚22−(𝑛+1). This
probability is less than 𝛿 provided that

𝑚 < √2𝛿(√2)𝑛.
Remarkably, this bound is even less restrictive than (3),
while the conclusion is stronger: not only are this many
points in convex position with probability greater than
1 − 𝛿, but in fact each point 𝑋𝑖 can be separated from the

Figure 5. One-shot separability in a sphere.

other ones by the specific hyperplane tangent to𝑂𝑋𝑖, which
is independent from other points, and can be constructed
exponentially faster than solving the program (7).

It turns out that this simple idea to choose hyperplane
𝐻 tangent to 𝑂𝑋𝑖 solves Problem 2 for surprisingly many
families of distributions, and is known as Fisher separabil-
ity [GGG+18].

Definition 2. A point 𝑋 ∈ ℝ𝑛 is Fisher-separable from
𝑌 ∈ ℝ𝑛 with threshold 𝛼 ∈ (0, 1] if

𝛼‖𝑋‖2 ≥
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖. (9)

We say that 𝑋 is Fisher-separable from a finite set 𝐹 ∈ ℝ𝑛

with threshold 𝛼 if (9) holds for all 𝑌 ∈ 𝐹.
The question is: how do we know that 𝑋𝑖 is Fisher-

separable from 𝑋𝑗, 𝑖 ≠ 𝑗? An answer to this question fol-
lows from the next statement.

Proposition 1 ([GGG+18]). Let 𝛼 ∈ (1/2, 1], 1 > 𝛿 > 0,
let 𝑋 be drawn from a distribution supported on 𝔹𝑛 whose prob-
ability density satisfies (5) with some 𝐶 > 0 and 𝑅 ∈ (1, 2𝛼),
and let 𝑌 be a finite set in 𝔹𝑛 with

|𝑌| ≤ 𝛿 (2𝛼𝑅 )
𝑛 1
𝐶 .

Then the point 𝑋 is Fisher-separable from the set 𝑌 with proba-
bility at least 1 − 𝛿.

Several interesting observations stem immediately from
Proposition 1. It appears that construction of separating
hyperplanes does not always require complete knowledge
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Figure 6. One-shot separability: we select a hyperplane that
divides the probability measure into two maximally unequal
parts.

of sets that are being separated. Some rough information
such as the value of the point 𝑂, the fact that all 𝑋𝑗, 𝑗 ≠ 𝑖
are in a unit ball centered at 𝑂, and that 𝑋𝑖 is drawn from
a SmAC distribution suffices. The resulting hyperplane
𝐻 separates 𝑋𝑖 from 𝑋𝑗, 𝑗 ≠ 𝑖 with probability at least
1−𝛿, and with some guaranteed margin (1−𝛼)‖𝑋𝑖‖. Note,
however, that this margin is not necessarily maximal as re-
quested by program (7).

It turns out that Fisher separability for exponentially
many points holds for many important families of distri-
butions, including rotation invariant log-concave distribu-
tions and product distributions whose components have
bounded support or very fast-decaying tails [GGT21]. At
the same time, there are examples of product distributions
with identical log-concave components for which this is no
longer true [GGT21]. It is hence natural to ask if and how
similar simple solutions could be derived for such distri-
butions with “heavier” tails.
4.2. One-shot separability: general case. Now we for-
mulate the same idea in general. Let ℙ𝑛 be an arbitrary
probability measure in ℝ𝑛, and let 𝑋 ∈ ℝ𝑛 be an arbitrary
point. Problem2 asks to construct a hyperplane separating
𝑋 fromother𝑚 points selected at random fromℙ𝑛 without
knowing their positions. Every hyperplane dividesℝ𝑛 into
two half-spaces, say 𝐻1 and 𝐻2, whose probability mea-
sures are 𝑝1 = ℙ𝑛(𝐻1), and 𝑝2 = ℙ𝑛(𝐻2), respectively. We
would like 𝑋 and the remaining𝑚 points to belong to dif-
ferent subspaces, say𝑋 ∈ 𝐻1, and other𝑚 points to belong
𝐻2. The probability of the latter event is 𝑝𝑚2 = (1 − 𝑝1)𝑚.
This probability is maximized if 𝑝1 is minimized. Hence,
the idea is to select the halfspace containing 𝑋 whose prob-
ability measure is minimal; see Figure 6. Formally, let ℍ𝑋
be the set of halfspaces of ℝ𝑛 containing 𝑋 , let

𝜙(ℙ𝑛, 𝑋) = inf
𝐻∈ℍ𝑋

ℙ𝑛(𝐻) (10)

be the minimal measure of a halfspace containing 𝑋 , and
let 𝐻∗(𝑋) be the minimizer2 in (10). Function 𝜙(ℙ𝑛, 𝑋) is
known as Tukey’s halfspace depth.

The probability that 𝐻∗(𝑋) separates 𝑥 from 𝑚 points
is (1 − 𝜙(ℙ𝑛, 𝑋))𝑚. We would like this probability to be
greater than a given constant 1−𝛿 even if𝑚 grows exponen-
tially fast with 𝑛. To ensure this, 𝜙(ℙ𝑛, 𝑋) should decrease
exponentially fast with 𝑛. This may not be the case for all
𝑋 : for example, if ℙ𝑛 is the uniform distribution in the
ball, and 𝑋 is the center of the ball, then 𝜙(ℙ𝑛, 𝑋) = 1/2.
However, there is a hope that 𝜙(ℙ𝑛, 𝑋) decreases fast on
average, for random point 𝑋 . In other words, we need ex-
pected value

𝑐(ℙ𝑛) = 𝔼[𝜙(ℙ𝑛, 𝑋)]
to decrease exponentially fast with 𝑛.

Definition 3. Let ℙ = {ℙ1, … , ℙ𝑛, … } be a family of prob-
ability measures, where ℙ𝑛 is the probability measure on
ℝ𝑛. We say that ℙ has exponential one-shot separability
if

𝑐(ℙ𝑛) ≤ 𝑎ℙ(𝑐ℙ)𝑛

for some constants 𝑎ℙ < ∞, 𝑐ℙ ∈ (0, 1).

In this section, we overview our recent results that es-
tablish exponential one-shot separability for a large class
of product distributions, and discuss a conjecture that this
property holds for all log-concave distributions.

Let us now be a bit more formal. We say that density
𝜌𝑛 ∶ ℝ𝑛 → [0,∞) of random vector 𝑋 = (𝑥1, … , 𝑥𝑛) (and
the corresponding probability measure ℙ𝑛) is log-concave,
if set

𝐷 = {𝑧 ∈ ℝ𝑛 ∣ 𝜌𝑛(𝑧) > 0}
is convex and 𝑔(𝑧) = − log(𝜌𝑛(𝑧)) is a convex function
on 𝐷. For example, the uniform distribution in an arbi-
trary convex body is log-concave. Let 𝐶 be the variance-
covariance matrix of 𝑋 , that is, matrix with components
𝑐𝑖𝑗 = Cov(𝑥𝑖, 𝑥𝑗). Because the log-concavity of ℙ𝑛 and
the definition of 𝑐(ℙ𝑛) are invariant under invertible lin-
ear transformations, we may assume that 𝔼[𝑋] = 0 and
𝐶 = 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix. Such distributions are
called isotropic. Quantity

𝐿ℙ𝑛 = ( sup
𝑧∈ℝ𝑛

𝜌𝑛(𝑧))
1/𝑛

is called the isotropic constant of ℙ𝑛. Very recently, Brazi-
tikos, Giannopoulos, and Pafis [BGP22] proved that

𝑐(ℙ𝑛) ≤ exp (− 𝑎𝑛
𝐿ℙ𝑛

) (11)

2Each halfspace can be identified with its normal unit vector, the set of all
such vectors is a compact set, hence there must be a halfspace that achieves the
minimum.
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for some absolute constant 𝑎 > 0. A famous conjecture in
convex geometry predicts that

𝐿ℙ𝑛 ≥ 𝜖 (12)

for some constant 𝜖 > 0 independent from the dimension.
This conjecture has been made in 1986 by Jean Bourgain
[Bou86] in the form that “There exists a universal constant
𝜖 > 0 (independent from 𝑛) such that for any convex set
𝐾 of unit volume in ℝ𝑛, there exists a hyperplane 𝐻 such
that the (𝑛 − 1)-dimensional volume of the section 𝐾 ∩ 𝐻
is bounded below by 𝜖,” and since then is known as the
Hyperplane conjecture. It turns out that this conjecture
is equivalent to (12), and in fact has many other equiva-
lent formulations. Recently, Chen [Che21] made a break-
through and proved that

𝐿ℙ𝑛 ≥ 𝑛−𝑓(𝑛)

for some function 𝑓 tending to 0 as 𝑛 → ∞. Even more
recently, Klartag and Lehec [KL22] improved this to 𝐿ℙ𝑛 ≥
𝑏(log 𝑛)−5 for some absolute constant 𝑏 > 0. In combina-
tion with (11), a full proof of conjecture (12) would imply
that any family of log-concave probability measures has
exponential one-shot separability.

Our next example is a family of product distributions.
Specifically, for each 𝑛, let ℙ𝑛 be the the product measure
of one-dimensional probabilitymeasures 𝜇1,𝑛, … , 𝜇𝑛,𝑛. For
any distribution 𝜇 on ℝ, define

𝜓𝜇(𝑥) = inf
𝑐∈ℝ

𝔼[exp(𝑐(𝑍 − 𝑥))], 𝑐𝜇 = 𝔼[𝜓𝜇(𝑋)],

where 𝑍 and 𝑋 are random variables with distribution 𝜇.
Then we have proved [GGT] that ℙ𝑛 has exponential one-
shot separability provided that 𝑐𝜇 < 1 for each component
distribution 𝜇. This property holds for a large variety of dis-
tributions. For example, we have the following sufficient
condition [GGT].

Proposition 2. Let 𝑍 be a random variable with distribution
𝜇. Assume that 𝑍 is non-constant and 𝑀𝑍(𝑡) ≔ 𝔼[𝑒𝑡𝑍] < ∞
for some 𝑡 ≠ 0. Then 𝑐𝜇 < 1.

When our data are non-negative, Proposition 2 implies
the following corollary.

Corollary 1. Let 𝑍 be a non-constant non-negative random
variable with distribution 𝜇. Then 𝑐𝜇 < 1.

For log-concave distributions, we have the following ex-
plicit and uniform upper bound [GGT].

Proposition 3. For any log-concave probability distribution 𝜇
on ℝ, we have

𝑐𝜇 < 1 − 2 ⋅ 10−5.
Proposition 3 implies the following result.

Theorem 2. Let ℙ = {ℙ1, … , ℙ𝑛, … } be a family of product dis-
tributions such that all component distributions are log-concave.

Then ℙ has exponential one-shot separability (see Definition 3)
with parameters 𝑎ℙ = 1 and 𝑐ℙ < 1 − 2 ⋅ 10−5.

We did not try to optimize the upper bound for 𝑐𝜇 in
Proposition 3. Instead, we pose the problem of finding the
optimal upper bound as an open question. Specifically, if
ℱ is the class of all log-concave distributions on ℝ, then
what is the value of

𝑐ℱ = sup
𝜇∈ℱ

𝑐𝜇?

Proposition 3 provides the upper bound 𝑐ℱ ≤ 1−2⋅10−5 <
1. On the other hand, example of Laplace distribution
shows that

𝑐ℱ ≥ 3
4 +

𝑒
16 ∫

∞

1

𝑒−𝑡
𝑡 𝑑𝑡 = 0.7872… .

While the upper bound is clearly non-optimal, it may be
that 𝑐ℱ is equal to the lower bound.

5. Conclusions
A phenomenon known as curse of dimensionality states
thatmanymethods and techniques that are efficient in low
dimension become infeasible is high dimension. Stochas-
tic separation theorems are examples of the opposite phe-
nomenon, blessing of dimensionality, which states that
some aspects become easier in higher dimensions. The the-
orems state that if we have 𝑚 random points in ℝ𝑛, then,
with high probability, every point can be separated from
all others by a hyperplane. This is true even if the number
of points grows exponentially fast with dimension.

While being interesting from purely mathematical per-
spective, stochastic separation theorems could be a step-
ping stone for the development of much-needed error
correcting mechanisms [GGG+18], algorithms capable of
learning from just few examples [GGM+21], approaching
the challenge of continuous learning without catastrohpic
forgetting inmachine learning and AI, and to produce new
notions of data dimension [GMT19]. The theorems imply
that if the number of attributes is moderately high, AI er-
rors may be corrected by adding simple linear correctors,
that are fast, easy to compute and implement, and do not
destroy existing functionality of the system. The simplest
corrector is based on Fisher separability discussed in Sec-
tion 4.1. Deeper one-shot separation theorems discussed
in Section 4.2 make the method applicable even for distri-
butions for which Fisher separability fails.

References
[22] Safe driving cars, Nat. Mach. Intell. 4 (2022), 95–96.
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