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A fundamental idea in statistics and data science is that sta-
tistical procedures are judged by criteria such as misclassi-
fication rates, p-values, or convergence that measure how
the procedure performs when applied to many possible
data sets. But such measures gloss over quantifying the
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evidence in a particular data set. We show that assessing
a procedure and assessing evidence are distinct. The main
distinction is that procedures are assessed unconditionally,
i.e., by averaging over many data sets, while evidence must
be assessed conditionally by considering only the data at
hand.

We present four examples to illustrate the difference be-
tween assessing a procedure and assessing evidence. Then
we examine a fifth example in detail to introduce the Suf-
ficiency and Conditionality Principles and show why evi-
dence must be assessed conditionally on the data at hand,
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not averaged over many possible data sets. Finally we state
the Likelihood Principle, its relationship to the Sufficiency
and Conditionality Principles, and some of its implica-
tions.

Example 1 (Forensic evidence: fingerprints). After a finger-
print has been found at a crime scene and deemed to be of
sufficiently high quality, it is common to take a fingerprint
from a suspect to see whether it matches the print from the
scene. Whether the task is accomplished by a forensic ex-
aminer or by an algorithm, it results in a classification of
either match or mismatch. Using prints from a database
where it is known whether two prints come from the same
finger, we can estimate

𝛼 = Pr[Type A error] and 𝛽 = Pr[Type B error],

where the two types of error are classifying a true match
as a mismatch and classifying a true mismatch as a match.
Here 𝛼 and 𝛽 describe the procedure: how often, when
averaged over the universe of fingerprint pairs, it makes an
error of Type A or Type B. But those are averages over some
pairs that are hard to classify and others that are easy. A
pair that is hard to classify provides only weak evidence for
its conclusion, while an easy pair provides strong evidence.
Thus, 𝛼 and 𝛽 donot quantify the evidence in the particular
fingerprint pair at hand. To quantify the evidence we need
to know how hard this particular pair is to classify.

Example 1 illustrates a major theme of this paper,
namely, that different data sets, even of the same type
(here, pairs of fingerprints), contain evidence of different
strengths. So assessing a procedure, which requires averag-
ing over many possible data sets, differs from assessing the
evidence in a single data set.

Throughout this paper we will be dealing with a ran-
dom variable 𝑋 that is an observation from a probability
distribution 𝐹true which is unknown but is assumed to be-
long to a given set of distributions {𝐹}. Usually {𝐹} is in-
dexed by a parameter 𝜃 in a parameter space Θ and we
write 𝐹true ∈ {𝐹𝜃}𝜃∈Θ. For densities we write 𝑓𝜃. Thus 𝐹true
corresponds to a value 𝜃true, cdf 𝐹𝜃true

, and pdf 𝑓𝜃true
. The

value 𝜃true is unknown and we use 𝑋 to learn about it.
A key concept is the likelihood function

ℓ(𝜃) ≡ 𝑐𝑓𝜃(𝑥), (1)

where 𝑥 is the observed value of the random variable 𝑋
and 𝑐 > 0 is an arbitrary constant. ℓ(𝜃)measures how well
each value of 𝜃 describes the observation 𝑋 = 𝑥. In (1),
ℓ(𝜃) is a function of 𝜃, while 𝑥 is understood to be given.
ℓ(𝜃)matters only up to an arbitrarymultiplicative constant
𝑐 > 0. That is, ℓ1(𝜃) and ℓ2(𝜃) = 𝑐ℓ1(𝜃) are equivalent
likelihood functions. It is often convenient to set 𝑐 so that
max𝜃 ℓ(𝜃) = 1.

Example 2 (Likelihood ratio as evidence: two classes).
Suppose data sets of size 𝑛, 𝑋 = (𝑋1, … , 𝑋𝑛), are gener-
ated as independent observations from one of two distri-
butions: either 𝐹1, the uniform distribution on [0, 1], or 𝐹2,
the uniform distribution on [0, 1 + 𝜖]. In this example, Θ
is the set {1, 2}. For a given sample 𝑥 = (𝑥1, … , 𝑥𝑛), the ev-
idence that it was generated from 𝐹1 rather than 𝐹2 is the
likelihood ratio1

LR= ℓ(1)
ℓ(2) =

𝑛
∏
𝑖=1

𝑓1(𝑥𝑖)
𝑓2(𝑥𝑖)

={(1+𝜖)
𝑛 ifmax(𝑥1, … , 𝑥𝑛) ≤ 1,

0 ifmax(𝑥1, … , 𝑥𝑛) > 1.
That is, the evidence is either weak (LR ≈ 1) in favor of

𝐹1 or conclusive (LR = 0) in favor of 𝐹2, depending on the
value ofmax𝑥𝑖. Thus, different data sets of size 𝑛 have dif-
ferent strengths of evidence. Error probabilities and mis-
classification rates are averages over all possible data sets
and do not quantify the evidence in any individual data
set. Curiously, if 𝜖 ≪ 𝑛−1, then Pr2[max 𝑥𝑖 ≤ 1] is large
and most data sets from 𝐹2 favor 𝐹1, albeit weakly.

Example 3 (Confidence intervals: location family). Exam-
ple 3 examines samples of size 𝑛 = 3 from the family

𝑓𝜃(𝑥) =
1
𝜋

1
(𝑥 − 𝜃)2 + 1,

the Cauchy density with unknown location parameter 𝜃.
In this example, Θ = ℝ. Figure 1 shows four samples of
size 3 from 𝑓0. We pretend we don’t know the true value of
𝜃 and are trying to learn about it. Each sample is plotted
with its likelihood function and a 95% confidence inter-
val2 for 𝜃. The confidence interval is median(𝑥1, 𝑥2, 𝑥3) ±
3.28 because

Pr𝜃{[median(𝑥1, 𝑥2, 𝑥3) − 3.28,
median(𝑥1, 𝑥2, 𝑥3) + 3.28]∋𝜃} ≈ 0.95.

The confidence procedure yields four intervals that all have
length 6.56 and confidence coefficient .95 even though
some likelihood functions are sharply peaked and others
are broader. The intervals’ length, 2 × 3.28 = 6.56, is deter-
mined by taking a mean over all possible samples of size 3
w.r.t. the Cauchy distribution and is therefore the same for
every sample. Yet the samples with sharp likelihood func-
tions have strong evidence for 𝜃, while the samples with
broad likelihood functions have weak evidence.

Example 4 (Statistical consulting). A scientist is investi-
gating a phenomenon that generates a random number 𝑋
having a Poisson distribution with mean 𝜆. The value of
𝜆 is unknown. In this example, Θ = ℝ+. The scientist

1The Law of Likelihood asserts that evidence is measured by the likelihood ratio.
See external sources such as [Roy97] for an explanation.
2A 95% confidence interval CI(𝑋) is an interval constructed according to a pro-
cedure having the property that Pr𝜃[CI(𝑋) ∋ 𝜃 ≥ .95] for all 𝜃. Consult stan-
dard statistics texts for a further explanation of confidence intervals and their
role in statistics.
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Figure 1. Four samples of size 𝑛 = 3 from the Cauchy
distribution with 𝜃 = 0. Each panel shows a rug plot (tick
marks on the horizontal axis) for the sample, a 95%
confidence interval (horizontal bar at 𝑦 = 0.1), and the
likelihood function (solid curve) for 𝜃. Sample 4 has a sharp
likelihood function and hence contains strong information for
𝜃. In contrast, the other samples have broader likelihood
functions and weaker information for 𝜃. The likelihood
functions are scaled so each has a maximum value of 1.

brings a single observation 𝑋 = 1 (experiments are expen-
sive) to a statistician and asks what can be inferred. The
statistician uses a standard procedure to give the scientist
the 95% confidence interval shown in Figure 2. The scien-
tist notices there are two values of 𝜆, 𝜆1 and 𝜆2, such that

(a) 𝜆2 is in the confidence interval, but 𝜆1 is not and
(b) 𝜆1 describes the datum 𝑥 = 1 better than 𝜆2 (be-
cause ℓ(𝜆1) > ℓ(𝜆2))

and asks the statistician, “Why do you call my attention to 𝜆2
but not 𝜆1?”

Implicit in the scientist’s question is the scientist’s in-
terest in knowing which values of 𝜆 describe the datum
𝑥 = 1 well. The statistician used a standard procedure for
constructing a confidence interval, but that doesn’t address
the scientist’s interest, because the confidence interval and
confidence coefficient of 0.95 come from averaging over
all possible data sets while the scientist wants to draw an
inference from this particular data set and because the con-
fidence interval excludes some values of 𝜆 that describe the
data well.

Examples 1–3 illustrate that different data sets even
of the same size and type can have evidence of different
strengths. Example 4 raises the question of what a scientist
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Figure 2. 𝑋 ∼ Poi𝜆. The datum is 𝑥 = 1. The dark bar just
above the horizontal axis is a 95% confidence interval for 𝜆.
The curve is the likelihood function for 𝜆.

wants from the analysis of a data set: average performance
or evidential strength.

Now we take up one more example to introduce princi-
ples that measurements of evidence must follow. Suppose
there is a repeatable experiment that results in a random
𝑋 that is either success (𝑋 = 1) or failure (𝑋 = 0). Let 𝑋𝑖
be the outcome of the 𝑖th repetition and assume the 𝑋𝑖’s
aremutually independent, all with the same probability of
success 𝜃true. The 𝑋𝑖’s are called Bernoulli trials. Θ = [0, 1].
Two possible experiments to learn about 𝜃true are:

E1. Under E1 we conduct two trials and record 𝑥1 and
𝑥2.

E2. Under E2 we conduct as many trials as needed until
the first success. If 𝑘 is the eventual number of trials,
then 𝑥1 = ⋯ = 𝑥𝑘−1 = 0 and 𝑥𝑘 = 1.

A third possible experiment is:

E3. Under E3 we toss a coin. If the coin lands Heads we
conduct E1; if the coin lands Tails we conduct E2.

Four possible scenarios are:

1. Conduct E1 and observe the outcome 𝑥1 = 0; 𝑥2 = 1;
2. Conduct E2 and observe the outcome 𝑥1 = 0; 𝑥2 = 1;
3. Conduct E3 and observe the outcome Heads followed

by 𝑥1 = 0; 𝑥2 = 1; and
4. Conduct E3 and observe the outcome Tails followed

by 𝑥1 = 0; 𝑥2 = 1.
Let Ev stand for “evidence” and, without yet defining what
it means, consider whether the four scenarios have the
same evidence regarding 𝜃. That is, do we think the fol-
lowing equalities should hold:

Ev(E1, (0, 1)) ?= Ev(E3, (𝐻, 0, 1))
?= Ev(E3, (𝑇, 0, 1)) ?= Ev(E2, (0, 1))? (2)
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The symbol
?= in (2) means we are considering whether we

should require equality to hold for any quantity we’re will-
ing to call “evidence.” We now introduce two principles
that argue for the equalities to hold.
Conditionality Principle (CP). CP describes the evidence
in a situation where there are two possible experiments, E1
and E2, and we randomly choose which to perform. If we
randomly choose E1 and observe 𝑥1, the evidence is just
the same as if we had always intended to perform E1 and
had observed 𝑥1. CP was first formally stated in [Bir62].
More recently Berger and Wolpert [BW88] state CP as:

Suppose there are two experiments 𝐸1 =
(𝑋1, 𝜃, {𝑓1𝜃 }) and 𝐸2 = (𝑋2, 𝜃, {𝑓2𝜃 }). Consider the
mixed experiment 𝐸∗, whereby 𝐽 = 1 or 2 is ob-
served, . . . , and experiment 𝐸𝑗 is then performed.
. . . Then Ev(𝐸∗, (𝑗, 𝑥𝑗)) = Ev(𝐸𝑗 , 𝑥𝑗).

Berger and Wolpert’s 𝐸1, 𝐸2, and 𝐸∗ are our E1, E2, and
E3. Their 𝑋1 and 𝑋2 are our observations under E1 and E2,
respectively. Their 𝐽 is our coin toss.

CP means we should accept as reasonable only those
methods of measuring evidence that yield Ev(𝐸∗, (𝑗, 𝑥𝑗)) =
Ev(𝐸𝑗 , 𝑥𝑗). Many people agree that CP is a desirable prop-
erty of any quantity we call “evidence.” Readers should
consider for themselves whether they agree.

According to CP, Ev(E3, (𝐻, 0, 1)) = Ev(E1, (0, 1)) and
Ev(E3, (𝑇, 0, 1)) = Ev(E2, (0, 1)), so (2) becomes

Ev(E1, (0, 1)) = Ev(E3, (𝐻, 0, 1))
?= Ev(E3, (𝑇, 0, 1)) = Ev(E2, (0, 1)). (3)

Sufficiency Principle (SP). A statistic is a function of a
random variable, say 𝑇(𝑋). A sufficient statistic is one for
which the conditional distribution 𝐹𝜃(𝑋 | 𝑇(𝑋)) does not
depend on 𝜃. That is, 𝐹𝜃(𝑋 | 𝑇(𝑋)) is the same for all 𝜃 ∈ Θ.

For an example of sufficiency, let 𝑋 = (𝑋1, … , 𝑋𝑛) be
𝑛 i.i.d. observations from the N(𝜃, 1) distribution where 𝜃
is unknown. Then ̄𝑋 ≡ 1

𝑛
∑𝑋𝑖 is a sufficient statistic for 𝜃.

For another example, let 𝑋 = (𝑋1, … , 𝑋𝑛) be 𝑛 independent
Bernoulli trials with the same unknown parameter 𝜃. Then
∑𝑋𝑖 is a sufficient statistic for 𝜃.

When a sufficient statistic exists 𝑋 can be decomposed
as 𝑋 ≡ (𝑇(𝑋), 𝐴(𝑋)), where 𝐴 represents all aspects of 𝑋
other than 𝑇(𝑋). That is, 𝑋 can be reconstructed from 𝑇(𝑋)
and𝐴(𝑋). In our example of a sufficient statistic for N(𝜃, 1),
𝐴(𝑋) is (𝑋1 − ̄𝑋, … , 𝑋𝑛 − ̄𝑋) or its equivalent. In our exam-
ple of Bernoulli trials, 𝐴(𝑋) specifies which 𝑋𝑖’s are 1’s and
which are 0’s.3

3See standard textbooks on mathematical statistics for further discussion of suf-
ficiency. The factorization theorem and Basu’s theorem are key concepts. Text-
books also contain examples of statistics that are sufficient for one parameter
space Θ1 but not for another Θ2.

Sufficiency is important in statistics because 𝑇(𝑋) car-
ries all the information in 𝑋 for 𝜃. Because 𝐹𝜃(𝑋 | 𝑇(𝑋))
does not depend on 𝜃, 𝐹𝜃(𝐴(𝑋) | 𝑇(𝑋)) also does not de-
pend on 𝜃, so 𝐴(𝑋) carries no additional information for
𝜃. It is sufficient to base inference on just 𝑇(𝑋); other as-
pects of 𝑋 may be ignored.

SP says that for an experiment 𝐸 with observation 𝑋 and
sufficient statistic 𝑇(𝑋), if two outcomes 𝑥1 and 𝑥2 satisfy
𝑇(𝑥1) = 𝑇(𝑥2), then Ev(𝐸, 𝑥1) = Ev(𝐸, 𝑥2).

In E3, the sequence of Bernoulli trials is sufficient (not
proven here), so Ev(E3, (𝐻, 0, 1)) = Ev(E3, (𝑇, 0, 1)) and (3)
becomes

Ev(E1, (0, 1)) = Ev(E3, (𝐻, 0, 1))
= Ev(E3, (𝑇, 0, 1)) = Ev(E2, (0, 1)). (4)

That is, we accept as reasonable only those methods of
quantifying evidence that imply (4).

A common statistical analysis is to partition Θ into
Θ1 ∪ Θ2 and test the hypothesis 𝐻1 ∶ 𝜃true ∈ Θ1 versus
𝐻2 ∶ 𝜃true ∈ Θ2. Once 𝑋 = 𝑥obs has been observed we
partition the possible outcomes of 𝑋 into 𝑋1, the set of 𝑥’s
that support Θ1 more than the observed 𝑥obs, and 𝑋2, the
set of 𝑥’s that supportΘ2 at least as much as 𝑥obs. Then the
p-value4 is

𝑝 = sup
𝜃∈Θ1

Pr 𝜃[𝑋2].

Table 1 shows p-values under E1, E2, and E3 for testing
𝐻1 ∶ 𝜃true ∈ Θ1 ≡ [.95, 1] vs. 𝐻2 ∶ 𝜃true ∈ Θ2 ≡ [0, .95).
𝑝1 ≠ 𝑝2 ≠ 𝑝3, so (4) does not hold and p-values cannot
be said to measure the evidence for 𝐻1 vs. 𝐻2.
Likelihood Principle (LP). An informal statement5 of LP
is

All the information about 𝜃 . . . is contained in the
likelihood function. [BW88]

LP is related to CP and SP by a theorem due to [Bir62],6

(𝑆𝑃, 𝐶𝑃) ⇔ 𝐿𝑃, which says that CP and SP together imply
and are implied by LP. The theorem is important because
CP and SP each seem intuitively reasonable yet lead to LP,
which not only seems unreasonable to many statisticians
but says common statistical procedures like p-values and
hypothesis tests do not measure evidence. LP says all the
statistical evidence in a given data set is contained in the
likelihood function ℓ(𝜃) ∝ 𝑓𝜃(𝑥). ℓ(𝜃) depends only on
the observed 𝑥, which brings us back to a pointmade in the
examples, viz., that evidence must be computed using the
observed 𝑥 and not by averaging over unobserved values
of 𝑋 . In contrast, performance measures such as p-values

4Consult introductory statistics texts for more on p-values and their role in
statistics.
5See [BW88] for formalities and the role of LP in statistics.
6Birnbaum’s proof is essentially the argument leading from (2) to (4) for gen-
eral experiments, not just for E1, E2, and E3.
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E1: 𝑋 is one of

⎧⎪
⎨⎪
⎩

(𝟎, 𝟎) (𝐟.𝟗𝟓 = .𝟎𝟎𝟐𝟓)
(𝟎, 𝟏) (𝐟.𝟗𝟓 = .𝟎𝟒𝟕𝟓)
(𝟏, 𝟎) (𝐟.𝟗𝟓 = .𝟎𝟒𝟕𝟓)
(1, 1) not relevant

⎫⎪
⎬⎪
⎭

𝑝1 = .0975

E2: 𝑋 is one of

⎧⎪
⎨⎪
⎩

(1) not relevant

(𝟎, 𝟏) (𝐟.𝟗𝟓 = .𝟎𝟒𝟕𝟓)
(𝟎, 𝟎, 𝟏) (𝐟.𝟗𝟓 = .𝟎𝟎𝟐𝟑𝟕𝟓)
⋮ (𝐟.𝟗𝟓 = …)

⎫⎪
⎬⎪
⎭

𝑝2 = .05

E3: 𝑋 is one of

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

(𝐇, 𝟎, 𝟎) (𝐟.𝟗𝟓 = .𝟎𝟎𝟏𝟐𝟓)
(𝐇, 𝟎, 𝟏) (𝐟.𝟗𝟓 = .𝟎𝟐𝟑𝟕𝟓)
(𝐇, 𝟏, 𝟎) (𝐟.𝟗𝟓 = .𝟎𝟐𝟑𝟕𝟓)
(𝐻, 1, 1) not relevant

(𝑇, 1) not relevant

(𝐓, 𝟎, 𝟏) (𝐟.𝟗𝟓 = .𝟎𝟐𝟑𝟕𝟓)
(𝐓, 𝟎, 𝟎, 𝟏) (𝐟.𝟗𝟓 = .𝟎𝟎𝟏𝟏𝟖𝟕𝟓)
⋮ (𝐟.𝟗𝟓 = …)

⎫
⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪
⎭

𝑝3 = .07375

Table 1. E1, E2, and E3 p-values for testing 𝐻1 ∶ 𝜃true ≥ .95 vs.
𝐻2 ∶ 𝜃true < .95 when the Bernoulli sequence (0, 1) is observed.
Each entry shows a possible outcome of the experiment and
the supremum of its probability for 𝜃 ≥ .95. The p-value is the
sum of the probabilities in bold. Note that 𝑝1 ≠ 𝑝2 ≠ 𝑝3 even
though the evidence is the same in each experiment.

and error rates average over unobserved values of 𝑋 . For
p-values specifically,

𝑝 = sup
𝜃∈Θ1

Pr 𝜃[𝑋2] = sup
𝜃∈Θ1

𝔼𝜃[𝟏𝑋2(𝑋)],

which is the supremum of an expectation over all possible
values of 𝑋 .

Some statistical ideas that follow LP are the maximum
likelihood estimator, a likelihood interval, a likelihood ra-
tio, and subjective Bayesian analysis. Some statistical ideas
that don’t follow LP are p-values, confidence intervals, mis-
classification rates, mean squared error, and bias.

Statisticians and data scientists often assert that we want
procedures that work well and that we should quantify
how well our procedures work. Granting that assertion,
we should also ask, “procedures that work well in accom-
plishing what task?” This paper shows that popular proce-
dures for testing hypotheses, finding confidence intervals,
and making classifications are not accomplishing the task

of assessing evidence; they are accomplishing something
else. Quantifying how well those procedures work is dif-
ferent from quantifying evidence. It behooves us to under-
stand what task we want to accomplish when analyzing
any given data set.

Methods for quantifying non-LP procedures are com-
mon in statistics references. Methods for quantifying ev-
idence are not, but can be found in the following ref-
erences, among others, along with a deeper analysis of
likelihood thought: [Blu02], [BSLM07], [GR88], [HB08],
[Mel99], [Mel00], [MR97], [Paw01], [Roy86], [RT03],
[Sev01], [Str18], and [TR95].
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