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Introduction
The question, “Can one hear the shape of a drum?”
has attracted and inspired many mathematicians
since it was asked by Mark Kac in 1966 [16]. The
methods used to understand this problem draw
on diverse areas: for example, partial differential
equations, dynamical systems, group theory, num-
ber theory, and probability. In this article we will
review some of the history and state of the art of
the problem and add a new twist to the story that
leads to a curious elementary geometric problem
about triangles, which we then solve.

Let us state the problem precisely. For a domain
(bounded open set)Ω ⊂ R2 consider the problem of
finding a function u on the closure of Ω, vanishing
at the boundary ∂Ω, and a number λ ∈ R satisfying

−∆u = λu
in Ω, where ∆ := ∂2

∂x2 + ∂2

∂y2 is the Laplace operator.
We call λ a Dirichlet eigenvalue of Ω if there is a
solution u 6≡ 0. Multiplying the equation by u and
integrating by parts (i.e., using Green’s identity),
one sees that any eigenvalue must be positive; and
using basic techniques from PDEs and functional
analysis, one can show (see [6]) that the set of
eigenvalues is an infinite discrete subset of R
and that the eigenspace, i.e., the set of solutions
u, corresponding to each eigenvalue is finite
dimensional. Hence one may write the eigenvalues
as a sequence 0 < λ1 ≤ λ2 ≤ λ3 · · · → ∞, where
each eigenvalue is repeated according to the
dimension of its eigenspace.

In this way a sequence of numbers λ1, λ2, . . .
is associated with each domain Ω. This begs for
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mathematical investigation. Can we calculate the
λk? No, except in a very few cases, for example,
rectangles, the disk,1 and certain triangles. Can we
say anything interesting about how the eigenvalues
depend on the shape of Ω? Yes. This is the subject
of the mathematical discipline called spectral
geometry (see [2] for a short introduction and
more references, and also [6] and [17]). We can
also pose the inverse problem: Is the domain Ω
determined uniquely by its eigenvalue sequence?
Of course, two congruent domains have the same
eigenvalue sequence (we say they are isospectral),
but do any two isospectral domains have to be
congruent? This is Kac’s question, mentioned
earlier, for the following reason: Think of Ω as a
drum, i.e., a membrane that is stretched over a
wire frame in the shape of ∂Ω. The membrane can
vibrate freely, except that it is fixed at the boundary.
When the drum vibrates you will hear a sound,
which is composed of tones of various frequencies.
These frequencies are the numbers γ

√
λk, where

γ is a constant depending on the material and
tension of the drum.2 So if you know γ, then in this
sense you can “hear” the eigenvalues λk. Without
that knowledge you can still hear the quotients√
λk/λ1, which correspond to the musical intervals

between the overtones and the fundamental tone
of the drum’s sound.

The problem may be easily generalized to
higher dimensions and to compact Riemannian
manifolds (with or without boundary). Already in
Kac’s time it was known that the answer is “no” in
the realm of Riemannian manifolds: Milnor had
constructed two flat tori of dimension 16 which
are isospectral but not isometric (the appropriate
notion of congruence for Riemannian manifolds).

1Here “calculate” is not to be taken literally: the eigenvalues
are the squares of the zeroes of the Bessel functions.
2This is an idealized physical model; for real drums the fre-
quencies are slightly different due to nonlinear effects and
the influence of the resonance chamber.
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Figure 1. Two drums with the same overtones;
see [13]. Isospectrality may be proved by
transplantation; see [3], [5], and
http://www.geom.uiuc.edu/docs/research/
drums/planar/planar.html, and
http://www.math.udel.edu/~driscoll/
research/drums.html for pictures of
eigenfunctions: For each triangle of the top
drum one prescribes Euclidean motions to three
triangles of the bottom drum. Then given any
eigenfunction on the top drum, one transplants
it to the bottom drum by moving the part of the
eigenfunction on each top triangle to the bottom
according to the given motions and adding
(inserting suitable ±±± signs) the functions
obtained on each bottom triangle. The motions
and signs can be chosen in such a way that the
resulting function on the bottom drum is
smooth across the dashed lines and hence an
eigenfunction with the same eigenvalue.

So the question was whether there could also be a
counterexample among domains in the plane.

It took twenty-six years to reduce the dimension
of counterexamples and make them fit into the
plane. The first planar counterexamples were given
in 1992 by C. Gordon, D. Webb, and S. Wolpert
[13]. Figure 1 shows one of the first examples that
was found. Since then many more examples of
isospectral Riemannian manifolds, among them
continuous families, have been found. Recent
surveys on these constructions are [11] and [12].

What Can You Hear?
Rather than focus on counterexamples to Kac’s
question, let’s be positive and ask which geometric
properties of a domain or Riemannian manifold can
be determined from its eigenvalue sequence. The
indirect way in which the eigenvalues arise makes
this seem a tough question to attack. However,
there is a wonderful idea that helps us. It is the idea
of transforms and traces. The two most important

instances of this idea are the heat trace and the
wave trace, corresponding to a sort of Laplace
and Fourier transform of the eigenvalue sequence.
More precisely, the heat trace is the function

(1) h(t) =
∞∑
k=1

e−λkt , t > 0,

and the wave trace is

(2) w(t) =
∞∑
k=1

cos
√
λkt, t ∈ R.

The sum defining h(t) converges for every t > 0,
and h is a smooth function. The sum defining w(t)
never converges, but one can make sense of it in
the sense of distributions, so w is a distribution
on R. For example, if λk = k2 and we sum over
k ∈ Z, then the Poisson summation formula gives

(3) w(t) =
∑
k∈Z

coskt = 2π
∑
l∈Z
δ2πl(t),

where δ2πl is the delta distribution sitting at the
point 2πl (to check this formally, simply calculate
the Fourier series of the right-hand side). For this
article we will be sloppy about the distinction
between functions and distributions.

So why are the functions h, w useful for our
problem? The reason is that there is a different way
of understanding them, and this yields the desired
link to the geometry of Ω. For h this involves the
heat equation

(∂t −∆)v(t, x) = 0, t > 0, x ∈ Ω,
where ∂t := ∂

∂t . This equation has a unique solution
for any initial data v(0, x) = f (x) if we impose
the boundary condition that v(t, x) = 0 for all
t > 0 and x ∈ ∂Ω. By separation of variables
we obtain v(t, x) =

∑∞
k=1 ake−λktuk(x), where the

uk form an orthonormal basis of L2(Ω) of real-
valued eigenfunctions corresponding to the λk and
ak =

∫Ω f (y)uk(y) dy . In other words,

v(t, x) =
∫
ΩH(t, x, y)f (y) dy,

whereH(t, x, y) =
∑∞
k=1 e−λktuk(x)uk(y). The func-

tionH : (0,∞)×Ω×Ω→ R is called the heat kernel
of Ω, and since the uk are normalized in L2, one
sees that

(4) h(t) =
∫
ΩH(t, y, y) dy.

This is the trace of the operator et∆ : f , v(t, ·);
hence the name heat trace for h. Now we observe
that for any fixed y ∈ Ω, the function (t, x) ,
H(t, x, y) is the solution of the heat equation with
initial data f (x) = δy(x); that is, it describes the
distribution of heat after time t , when initially
there is a single hot spot at y . Although heat
spreads at infinite velocity (that is, H(t, x, y) > 0
for all x no matter how small t > 0), the value of
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H(t, x, y) at x = y for t close to zero will be mostly
influenced by the geometry of Ω near the point y .
A precise analysis of the heat equation shows that
for a Riemannian surface Ω without boundary we
have the asymptotic behavior

H(t, y, y) ∼ t−1
∞∑
j=0

aj(y)tj as t → 0,

where each aj(y) is a universal polynomial in
derivatives of the Gauss curvature K(y) of Ω at
y . For example, a0(y) = 1

4π , a1(y) = 1
12πK(y). IfΩ has a boundary, then its influence is felt only

when the distance of y to the boundary is of order
at most

√
t , and in the integral (4) this contributes

extra terms involving the curvature of the boundary
and terms involving the powers t−1/2+j . In the case
of planar domains with polygonal boundary there
is no curvature, but the corners give a contribution,
and this leads to the formula

h(t) = a0 t−1 + a1/2 t−
1
2 + a1 +O(e−

c
t ) as t → 0

for some constant c > 0 where

a0 =
A

4π
, a1/2 = −

P
8
√
π
, a1 =

1
24

∑
i

(
π
αi
− αi
π

)
,

where A is the area, P is the perimeter, and the αi
are the interior angles of the polygon. This formula
was first mentioned in [18]; the first published
proof was given in [20]. In the case of the triangle we

have
∑
i αi = π , so a1 = π

24

3∑
i=1

1
αi −

1
24 . Therefore, if

we know all the λk, then we know the function h(t)
and hence the coefficients a0, a1/2, a1, hence the
area, the perimeter, and the sum of the reciprocals
of the angles of the triangle. So we can hear these
quantities. This motivates the following theorem:

Theorem 1. A triangle is determined uniquely up
to congruence by its area A, its perimeter P , and
the sum R of the reciprocals of its angles.

Corollary 1. One can hear the shape of a triangle
among all triangles.

That is, if we know that Ω is a triangle, then the
spectrum of Ω determines which triangle it is.

Corollary 1 was first proved by C. Durso; see
[10]. Durso used in her proof the wave kernel,
which is a much more powerful tool in spectral
geometry than the heat kernel—at the cost of
harder technical issues in its analysis. The main
idea, however, is beautiful and easy to understand.
After telling this remarkable story we will return
to the proof of Theorem 1. This yields a new proof
of Corollary 1, which avoids the use of the wave
kernel.

The Wave Kernel

The wave trace w(t) can be obtained in the same
way as the heat trace but starting with the wave
equation

(∂2
t −∆)u(t, x) = 0, t ∈ R, x ∈ Ω

with initial data u(0, x) = f (x), (∂tu)(0, x) = 0
and boundary values u(t, x) = 0 for all t ∈ R,
x ∈ ∂Ω. This equation has a unique solution
for each f , and it describes vibrations of Ω, or
propagation of waves on Ω, with initial shape f .
Again the solution can be written in the form
u(t, x) =

∫ΩW(t, x, y)f (y) dy , where W is now a
distribution, and

(5) w(t) =
∫
ΩW(t, y, y) dy,

the trace of the operator cos t
√
−∆ : f , u(t, ·).

How can we learn anything about the function
W(t, x, y)? It may help to think of Ω as a lake. At
time t = 0 we drop a stone into the lake at the
place y—this corresponds to the initial condition
f (x) = δy(x)—and observe the resulting waves.
In a linear water wave model, x , W(t, x, y) is
the lake’s surface at time t . Everyone knows what
happens: A circular wave front centered at y will
form, its radius increasing linearly with t . When
it reaches the boundary of the lake, it will be
reflected. In our simple model there is no loss of
energy, and the wave will move on forever. The
precise shape of the wave front can be described
as follows: Starting at y walk in any direction at
speed 1. Always walk straight, except when you hit
the boundary. In this case reflect off the boundary
according to the law “angle of reflection = angle of
incidence”. The wave front at time t is the set of
points that you can reach in this way when walking
for time t .

This helps us understand the integrand
W(t, y, y) in (5): It will be large only for those
times t for which the wave front returns to y after
time t , i.e., for which there is a path3 from y to y
of length t . A more careful analysis then shows
that when integrated over y , many of these “large”
contributions cancel with neighboring paths due
to oscillation. Only contributions from closed
paths—that is, those which return to y in the
same direction in which they started—are not
cancelled in this way. To summarize, we arrive at
the conclusion that w(t) is large only for |t| ∈ T ,
where

(6) T = {lengths of closed paths in Ω} ∪ {0}.
3Here a “path” is a succession of straight lines, or geodesics,
obeying the law of reflection when hitting the boundary ofΩ. If Ω has corners, as for a triangle, then a path running
into a corner can leave the corner in any direction.
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Here we also need to count the “instant” path of
length zero.

The precise mathematical statement of this
involves the notion of singular support of a
distribution, i.e., the set where the distribution is
not given by a smooth function. The wave front
at time t is precisely the singular support of
the distribution x , W(t, x, y). The result above
translates into the statement

singsuppw ⊂ clos(T)

(see [14] for the rather technical proof and [7]
for a survey of the history of this theorem). If
there is precisely one path for each t ∈ T (up to
reversal of direction), then the singular support is
equal to clos(T). It is conjectured that this equality
is always true, but this is an open problem. In
the example where Ω is a circle of length 2π (or
alternatively, the interval [0,2π] where we impose
periodic boundary conditions), this can be seen
explicitly: The eigenvalues are k2, k ∈ Z, and the
wave trace is (3); the numbers 2πl are precisely
the lengths of closed paths in Ω.

So we see that essentially we can hear the set T
of lengths of closed paths on Ω. This analysis can
be refined substantially by analyzing the kind of
singularities that the wave trace w has at points
of T . It turns out that the singularity at t = 0
carries the same information as the full asymptotic
expansion of the heat kernel at t = 0. The other
singularities yield additional information, and
using this, one can prove that one can hear generic
convex domains with analytic boundary and certain
symmetries; see [21], [15]. As a final remark on this,
we would like to mention the remarkable recent
work [8], in which for the first time the behavior
of w at cluster points of T was analyzed in the
special case of a disk. A recent survey on inverse
spectral results obtained using trace formulae and
related methods is [9].

To end this section, let us explain Durso’s proof
that one can hear the shape of a triangle.

It is classical that in an acute triangle Ω there
is a unique shortest closed path, and it is given
by the triangle formed by the base points of the
three altitudes of Ω; see Figure 2. Therefore, one
can hear the length of this path. Durso shows that
in the case of an obtuse or right-angled triangle,
the shortest closed path is the shortest altitude,
traversed up and down, and that the wave trace w
is singular at l0, the length of this path (this is the
hard analytical part of the proof). So one can hear
l0. Then she shows by an elementary geometric
argument that any triangle is determined uniquely
by area, perimeter, and the length of its shortest
closed path.

P

Q

R

A B

C

A B

C

Figure 2. In an acute triangle4ABC4ABC4ABC , how should
one choose points P,Q,RP,Q,RP,Q,R on each side so that
the triangle4PQR4PQR4PQR has minimal perimeter? The
answer: Choose the base points of the altitudes
of4ABC4ABC4ABC . The resulting triangle is called the
Fagnano triangle. There is a clever proof of this
fact using reflections of the side ABABAB across the
sides ACACAC and BCBCBC . Also, by a standard variational
argument it follows that the circumference of
the Fagnano triangle obeys the law of reflection
at each of the points P , Q, R, so an ideal billiard
ball on the billiard table4ABC4ABC4ABC will run forever
along this line.

A Theorem about Triangles
We now return to the proof of Theorem 1. This is
a rather peculiar statement: Have you ever heard
of reciprocals of angles? There does not seem to
be any geometric meaning to this, and our proof
draws on classical analysis rather than geometry.
Note that in contrast to Durso’s proof, our proof
uses only tools known in the 1960s.

First, let us remark that it is quite clear that
the three quantities A,P,R determine a triangle up
to finitely many choices. This follows easily from
the fact that the space of triangles T is three
dimensional (for example, it may be parameterized
by the side lengths), that the functions A,P,R on
T are analytic and independent (in the sense that
none of them can be expressed as a function of
the other two; independence in a stronger sense
will follow from Lemma 1 below), and that R is
a proper function on T /R>0, the quotient of T
by scalings: R tends to infinity when one of the
angles tends to zero, which is the only way to leave
all compact subsets of T /R>0. However, just as
prescribing the lengths of two sides and an angle
not enclosed by them determines a triangle only
up to two choices, it is not obvious why there
should be only one triangle with any given A,P,R.
Of course it is not hard to check this numerically,
but it is far from obvious how to give a rigorous
proof.
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C

α
2

r

Figure 3. Proof of (7): A = r P2A = r P2A = r P2 and

cot α2 + cot β2 + cot γ2 =
1
r
P
2cot α2 + cot β2 + cot γ2 =

1
r
P
2cot α2 + cot β2 + cot γ2 =

1
r
P
2 .

We denote the angles of the triangle byα,β, γ. We
use the following formula from triangle geometry;4

see Figure 3:

(7)
P2

4A
= cot

α
2
+ cot

β
2
+ cot

γ
2
.

This allows us to work exclusively with angles. We
will prove:

Proposition 1. A triple (α,β, γ) of positive real
numbers satisfying α + β + γ = π is uniquely
determined, up to ordering, by the values of

f (α,β, γ) = cot
α
2
+ cot

β
2
+ cot

γ
2
,(8)

g(α,β, γ) = 1
α
+ 1
β
+ 1
γ
.(9)

Theorem (1) follows directly from this: If area A,
perimeter P and R = g are given, then the angles
are determined by equation (7) and the proposition,
so the triangle is determined up to dilation. Then
the given area fixes the dilation factor.

So it remains to prove the proposition. One
way to proceed would be to eliminate one of the
variables, say α, using the relation α = π − β− γ;
then eliminate another variable, say β, from the
given value of g by solving a quadratic equation;
then plug the expressions for α and β into f and
investigate the resulting equation for γ. But this is
horrible! Even if it works, it is ugly mathematics.
If nothing else, the beautiful symmetry present in
the statement of the proposition is lost.

Symmetry is a treasure. One should keep it and
use it as long as possible. This is what we shall do.

Proof of Proposition 1. Let

D ={(α,β, γ) : α,β, γ > 0,

α+ β+ γ = π} ⊂ R3
>0,

where R>0 = (0,∞). We think of points of D as
“marked triangles up to dilation”, where “marked”
means that we have named the angles in a certain

4We are grateful to Richard Laugesen for pointing out this
identity. Amazingly, both sides are also equal to the prod-

uct cot α2 cot β2 cot γ2 . It’s a nice little exercise in addition
theorems to prove this.

γ

β

α

α

γ

β

e

Figure 4. The space of angles of a triangle, and a
level line of ggg.

order. The setD is (the interior of) a triangle itself—
the triangle cut out of the planeα+β+γ = π by the
positive octant; see Figure 4. Points on the dashed
lines correspond to isosceles triangles; the center
e corresponds to the equilateral triangle. Let us
call a point that does not lie on a dashed line a
nonisosceles point. The nonisosceles points form
six connected subsets, which we call chambers.
The dashed lines are also lines of symmetry: If we
pick a nonisosceles point and reflect it step by step
across all dashed lines, we obtain six points, one
in each chamber. These six points correspond to
the same triangle, with angles named in different
orders. Each chamber corresponds to one ordering
of the angles, for example, the lower left chamber
to the ordering α > β > γ or α ≥ β ≥ γ when we
include its dashed boundary parts.

The idea of the proof is to show that the level
sets of the function g are convex curves (see Fig-
ure 4) and that f is strictly monotone along the part
of any one of these curves lying in one chamber.

Lemma 1. Consider the functions f,g and h(α,β,γ)=
α+β+γ on the positive octant R3

>0.

a) The function g is strictly convex on R3
>0.

b) The gradients∇f ,∇g,∇h are linearly inde-
pendent at all nonisosceles points of D.

Let us finish the proof of Proposition 1 and then
return to prove Lemma 1. The strict convexity of
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g implies that the sublevel set G≤s = {p ∈ R3
>0 :

g(p) ≤ s} is strictly convex for any s > 0, with
boundary the level surface Gs = {p ∈ R3

>0 : g(p) =
s}. Furthermore, these sets are symmetric under all
permutations of the coordinates. These properties
then also hold for the intersections of the sublevel
and level sets with the plane α+ β+ γ = π . Since
g(p) → ∞ when p approaches the boundary of
D (i.e., when at least one of the angles tends to
zero), it follows that the sets Gs ∩ D are either
closed curves in the interior of D which encircle
the point e or are the point e or are empty. Since
the equilateral triangle has g(e) = 9

π , the first case

corresponds to s > 9
π .

In particular, we see that the point e is already
determined by the value of g alone.5

Now consider any level curve Gs ∩D with s > 9
π .

Consider the arc of the curve running inside one
chamber, with endpoints p, q corresponding to
isosceles triangles. Our proof will be complete if
we can show that f is strictly monotone along this
part of the curve.

Suppose f is not strictly monotone. Then there
would be a point r on this arc, different from p
and q, where f is stationary; that is, the derivative
of f along the arc vanishes at r . By the Lagrange
multiplier theorem this would mean that ∇f (r) is
a linear combination of ∇g(r) and ∇h(r). But this
would be a contradiction to part b of Lemma 1.
This completes the proof of the proposition. �

Proof of Lemma 1. a) The Hessian (matrix of sec-
ond derivatives) of g is the diagonal matrix with
entries 2

α3 , 2
β3 , 2

γ3 on the diagonal. This is clearly

positive definite for all (α,β, γ) ∈ R3
>0, and this

implies that g is strictly convex.
b) We have

∇f = −1
2


1

sin2 α
2

1

sin2 β
2

1
sin2 γ

2

 , ∇g = −


1
α2

1
β2

1
γ2

 , ∇h =


1

1

1

 .
Suppose there was a nonisosceles point (α,β, γ)
(i.e., the numbersα, β, γ are pairwise different) and
numbers R, S, T , not all zero, with R∇f + S∇g +
T∇h = 0. Note that R, S cannot both be zero. Then
the non-constant function

F(y) = −R
2

1

sin2 y
2

− S 1
y2
+ T

would have three different zeroes in the interval
(0, π), namely, y = α, y = β and y = γ. In order to
show that this cannot happen, we prove that the
function F is strictly monotone or strictly concave

5This can also be seen from the arithmetic-harmonic mean

inequality 3
(

1
α +

1
β +

1
γ

)−1
≤ α+β+γ

3 with equality iff α =
β = γ.

or convex on this interval, depending on the values
R, S, T . We use the following fact, proved below:

Lemma 2. The function G(x) = 1
sin2 x −

1
x2 is strictly

increasing and strictly convex on the interval (0, π).

This lemma implies that the function GC(x) =
1

sin2 x −
C
x2 is, on the interval (0, π), strictly increas-

ing for C ≥ 1 and strictly convex for C ≤ 1, since

GC(x) = G(x) + 1−C
x2 and the function 1−C

x2 is in-

creasing for C > 1 and convex for C < 1. Now
clearly we can write F(y) as a non-zero constant
multiple of GC( y2 ), for some C, plus a constant.
Therefore, F cannot have three different zeroes on
the interval (0,2π), and Lemma 1b) follows. �

Proof of Lemma 2. First note that this is non-
trivial: It is easy to check that both 1

sin2 x and 1
x2

have positive second derivative whenever they are
defined, hence are convex, but it is not clear why
their difference should be convex. However, things
become very transparent when we use the series
representation (partial fraction expansion)

1

sin2 x
=

∞∑
k=−∞

1
(x− kπ)2 ,

which follows from the well-known partial fraction
expansion of the cotangent by differentiation. This
yields G(x) =

∑
k≠0

1
(x−kπ)2 . Now every summand

1
(x−kπ)2 is strictly convex on (0, π) since the func-

tion 1
x2 is strictly convex on both half lines x < 0

and x > 0, so G is strictly convex. Furthermore,
the series shows that G is regular at x = 0, and it
is also even, so G′(0) = 0. Combined with strict
convexity, this implies that G is strictly increasing
on the interval (0, π), which was to be shown. �

Further Remarks
Let us take another look at the proof of Theorem 1
from a slightly different perspective. Proposition 1,
which implies Theorem 1 by elementary triangle
formulas, may be restated as saying that the mapΦ = (f , g) : D → R2 is injective on the closure in
D of each chamber. The proof of injectivity has
two ingredients: First, Lemma 1b), which may be
restated as saying that the differential of the mapΦ is invertible in the chamber and hence, by the
inverse mapping theorem, that Φ is locally injective
everywhere; that is, every point of the chamber has
a neighborhood on which Φ is injective. Second, the
convexity of Lemma 1a) allows us to infer global
injectivity from this local statement. Finally, the
analytic core of the whole argument is Lemma 2,
which is used in the proof of Lemma 1b). We now
take another look at this.
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A Different Proof of Lemma 2

While the given proof using the partial fraction
representation is very elegant, you might wonder if
there is a more pedestrian way to prove convexity
of G. Indeed there is. Here is a sketch. It was our
first proof of this result, and it is the result of the
bachelor’s thesis of the second author. A short
calculation gives 1

2G
′′(x) = 3

sin4 x −
2

sin2 x −
3
x4 . We

need to show that this is positive (here and in the
sequel we always assume x > 0). This is equivalent
to the inequality

(10) 3 sin4 x+ 2x4 sin2 x
!
< 3x4.

How can one prove an inequality involving trigono-
metric functions and polynomials? Maybe your first
idea is to use the well-known inequality sinx < x
to get rid of the sines. But clearly this does not
help, since 3x4 + 2x4 · x2 > 3x4. How can we do
better?

Recall where the inequality sinx < x comes
from: x is the first term in the Taylor series
of sinx; the next term is negative. Of course
this is not a proof, but it is the core idea,
which can be turned into a proof as follows: The
function f (x) = x − sinx vanishes at x = 0 and
has derivative f ′(x) = 1 − cosx, which is always
nonnegative, and is positive for small positive x.
Thus, x − sinx > 0 for all positive x follows by
integration: f (x) =

∫ x
0 f ′(t) dt > 0.

So in order to prove (10) we can try to use a
better estimate for sinx by using more terms from
its Taylor series. We have the estimate

(11) associatedwith sinx < x− x
3

6
+ x5

120
.

This can be proved in the same way as sinx < x:
The function f (x) = x − x3

6 +
x5

120 − sinx satisfies
f (0) = f ′(0) = f ′′(0) = f ′′′(0) = f (4)(0) = 0 and
f (5)(x) = 1− cosx ≥ 0, and > 0 for small positive
x. Integrating, we obtain f (4)(x) =

∫ x
0 f (5)(t) dt > 0;

then integrating again we get f ′′′(x) > 0, and so
forth until we obtain f (x) > 0 for all x > 0.6

We now plug (11) into the left-hand side of (10).
A rather tedious calculation shows that the result,

6Instead we could have used Taylor’s formula with remain-
der for the function g(x) = sinx:

g(x) =
4∑
k=0

xk

k!
+ 1

4!

∫ t
0
(x− t)4g(5)(t) dt,

which using g(5)(t) = cos t ≤ 1 (and < 1 for small posi-
tive t) and

∫ t
0(x − t)4 dt =

1
5 x

5 yields the same result. Yet

another proof uses Leibniz’s criterion for the Taylor series

x− x3

3! +
x5

5! + · · · of sinx, which is alternating. The terms

after the fifth power are monotonically decreasing in abso-

lute value if x2n+1

(2n+1)! <
x2n−1

(2n−1)! for n ≥ 4, which is equivalent

to x2 < 2n(2n + 1), hence true for x <
√

72. Since the first

omitted term after x
5

5! is negative, we get that the sum of the

which starts as 3x4 − 1
15x

8 + · · · , is less than 3x4

for x < 4. The main point is that the second term
is negative. Among the higher terms some are
positive, but they can easily be estimated against
the negative ones.

A Few Open Problems

The way in which the Dirichlet eigenvalues deter-
mine the triangle is somewhat indirect: First one
constructs the heat kernel h (see (1)), and then
one considers the coefficients in its asymptotic
expansion to prove the result. In particular, one
needs to know (asymptotic information on) all the
eigenvalues for this. It is natural to ask whether
a finite number of eigenvalues, ideally only three,
suffice to determine the triangle.

Problem. Do the first three Dirichlet eigenvalues,
λ1, λ2, λ3, determine a triangle?

Numerical evidence was provided in [1] that
this is true—but that the corresponding statement
for λ1, λ2, λ4 is false. However, no proof of this is
known. As a partial result in this direction, it is
proved in [4] that for each ε > 0 there is a number
N so that λ1, . . . , λN determine a triangle uniquely
among all triangles whose angles are all greater
than or equal to ε.

Problem. Is there a closed path (not hitting a cor-
ner) on every triangle?

For acute triangles the answer is “yes”; see
Figure 2. The problem is open for general obtuse
triangles.

Problem. Does the second Neumann eigenfunc-
tion on an obtuse triangle have its extrema on the
boundary?

This is conjectured to be true and is a special
case of the hot spots conjecture. See the recent
discussion on polymath [19].

Let us mention two other open questions on the
inverse spectral problem.

Problems. Can one hear the shape of a convex
polygon? Can one hear the shape of a domain Ω ⊂
R2 with smooth boundary?

We emphasize that the answer is “no” when
convexity or smoothness is not required: All known
counterexamples to “Can one hear the shape of
drum?” are nonconvex polygons; cf. Figure 1.

series, which is sinx, is less than x − x3

3! +
x5

5! , at least for
x <

√
72. Since

√
72 > π , this is enough for our purpose.
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