Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Geometric Group Theory

About this Title

Cornelia Druţu, Mathematical Institute, Oxford, United Kingdom and Michael Kapovich, University of California, Davis, CA

Publication: Colloquium Publications
Publication Year: 2018; Volume 63
ISBNs: 978-1-4704-1104-6 (print); 978-1-4704-4164-7 (online)
DOI: https://doi.org/10.1090/coll/063
MathSciNet review: MR3753580
MSC: Primary 20F65; Secondary 20E08, 20F05, 20F16, 20F18, 20F67, 20F69, 57M07

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • S. S. Abhyankar, Lectures on algebra. Vol. I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.
  • L. V. Ahlfors and A. Beurling, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142.
  • J. Alonso and M. Bridson, Semihyperbolic groups, Proc. London Math. Soc. (3) 70 (1995), no. 1, 56–114.
  • A. Abrams, N. Brady, P. Dani, M. Duchin, and R. Young, Pushing fillings in right-angled Artin groups, J. Lond. Math. Soc. (2) 87 (2013), no. 3, 663–688.
  • A. Abrams, N. Brady, P. Dani, and R. Young, Homological and homotopical Dehn functions are different, Proc. Natl. Acad. Sci. USA 110 (2013), no. 48, 19206–19212.
  • G. N. Arzhantseva and T. Delzant, Examples of random groups, preprint arXiv:0711.4238, to appear in Journal of Topology.
  • P. Assouad and M. Deza, Metric subspaces of $L^1$, Publications mathématiques d’Orsay 3 (1982), iv+47.
  • I. D. Ado, Note on the representation of finite continuous groups by means of linear substitutions, Bull. Soc. Phys.-Math. Kazan 7 (1936), 3–43.
  • S.I. Adyan, The Burnside problem and identities in groups, Springer, 1979.
  • —, Random walks on free periodic groups, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 6, 1139–1149.
  • J. M. Alonso et al., Notes on word hyperbolic groups, Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, Edited by H. Short, pp. 3–63.
  • D. Allcock and S. Gersten, A homological characterization of hyperbolic groups, Invent. Math. 135 (1999), 723–742.
  • I. Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087, With an appendix by Ian Agol, Daniel Groves, and Jason Manning.
  • L. V. Ahlfors, Lectures on quasiconformal mappings, second ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006, With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard.
  • Y. Algom-Kfir, Strongly contracting geodesics in outer space, Geom. Topol. 15 (2011), no. 4, 2181–2233.
  • J. M. Alonso, Finiteness conditions on groups and quasi-isometries, J. Pure Appl. Algebra 95 (1994), no. 2, 121–129.
  • R. Alperin, Locally compact groups acting on trees and Property T, Monatsh. Math. 93 (1982), 261–265.
  • S. Antoniuk, T. Łuczak, and J. Świa̧tkowski, Random triangular groups at density $1/3$, Compos. Math. 151 (2015), no. 1, 167–178.
  • Y. Antolín and A. Minasyan, Tits alternatives for graph products, J. Reine Angew. Math. 704 (2015), 55–83.
  • J. W. Anderson, Hyperbolic geometry, Springer, 2005.
  • J.E. Andersen, Mapping Class Groups do not have Kazhdan’s Property (T), preprint, arXiv:0706.2184, 2007.
  • J. Aliste-Prieto, D. Coronel, and J.-M. Gambaudo, Linearly repetitive Delone sets are rectifiable, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), no. 2, 275–290.
  • R. Arens, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593–610.
  • P. Assouad, Plongements isométriques dans $L^ {1}$: aspect analytique, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 19th Year: 1979/1980, Publ. Math. Univ. Pierre et Marie Curie, vol. 41, Univ. Paris VI, Paris, 1980, pp. Exp. No. 14, 23.
  • —, Comment on: “Isometric embeddings in $L^ {1}$: analytic aspect”, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, vol. 46, Univ. Paris VI, Paris, 1981, pp. Comm. No. C4, 10.
  • —, Sur les inégalités valides dans $L^1$, Europ. J. Combinatorics 5 (1984), 99–112.
  • O. Attie, Quasi-isometry classification of some manifolds of bounded geometry, Math. Z. 216 (1994), 501–527.
  • G. M. Adelson-Velskii and Yu. A. Sreider, The Banach mean on groups, Uspehi Mat. Nauk. (N.S.) 126 (1957), 131–136.
  • C.A. Akemann and M.E. Walter, Unbounded negative definite functions, Canad. J. Math. 33 (1981), 862–871.
  • J. M. Alonso, X. Wang, and S. J. Pride, Higher-dimensional isoperimetric (or Dehn) functions of groups, J. Group Theory 2:1 (1999), 81–122.
  • W. Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, Band 25, Birkhäuser, 1995.
  • C. Bär, On nodal sets for Dirac and Laplace operators, Comm. Math. Phys. 188 (1997), no. 3, 709–721.
  • H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. 25 (1972), 603–614.
  • —, Euler characteristics and characters of discrete groups, Invent. Math. 35 (1976), 155–196.
  • S. A. Basarab, The dual of the category of generalized trees, Ann. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 9 (2001), 1–20.
  • M. Batty, Groups with a sublinear isoperimetric inequality, IMS Bulletin 42 (1999), 5–10.
  • H. Bauer, Measure and integration theory, Studies in Math., vol. 26, de Gruyter, Berlin, 2001.
  • C. Bavard, Longueur stable des commutateurs, Enseign. Math. (2) 37 (1991), no. 1-2, 109–150.
  • W. Ballmann and M. Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math. (1995), no. 82, 169–209 (1996).
  • M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), 445–470.
  • L. Bessières, G. Besson, M. Boileau, S. Maillot, and J. Porti, Geometrisation of 3-manifolds, EMS Tracts in Mathematics, vol. 13, European Mathematical Society, Zurich, 2010.
  • N. Brady, M. Bridson, M. Forester, and K. Shankar, Snowflake groups, Perron-Frobenius eigenvalues and isoperimetric spectra, Geom. Topol. 13 (2009), no. 1, 141–187.
  • D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Math., vol. 33, American Mathematical Society, Providence, RI, 2001.
  • R. Bishop and R. Crittenden, Geometry of manifolds, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1964 original.
  • J. Behrstock and R. Charney, Divergence and quasimorphisms of right-angled Artin groups, Math. Ann. 352 (2012), no. 2, 339–356.
  • G. Besson, G. Courtois, and S. Gallot, Minimal entropy and Mostow’s rigidity theorems, Ergodic Theory Dynam. Systems 16 (1996), 623–649.
  • —, A real Schwarz lemma and some applications, Rend. Mat. Appl. (7) 18 (1998), no. 2, 381–410.
  • J. Brock, R. Canary, and Y. Minsky, The classification of Kleinian surface groups, II: The Ending Lamination Conjecture, Ann. of Math. (2) 176 (2012), no. 1, 1–149.
  • J. Bretagnolle, D. Dacunha-Castelle, and J.-L. Krivine, Lois stables et espaces $L^p$, Ann. IHP, section B 2 (1966), no. 3, 231–259.
  • B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s property ($T$), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008.
  • J. Behrstock, C. Druţu, and L. Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Annalen 344 (2009), 543–595.
  • L. Bartholdi and A. Erschler, Growth of permutational extensions, Invent. Math. 189 (2012), no. 2, 431–455.
  • A.F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer, 1983.
  • I. Belegradek, On cohopfian nilpotent groups, Bull. London Math. Soc. 35 (2003), 805–811.
  • G. Bergman, On groups acting on locally finite graphs, Annals of Math. 88 (1968), 335–340.
  • M. Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988), 143–161.
  • —, Problem list in geometric group theory, 2004, http://www.math.utah.edu/ $\sim$bestvina/eprints/questions-updated.pdf.
  • —, Geometric group theory and 3-manifolds hand in hand: The fulfillment of Thurston’s vision, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 1, 53–70.
  • M. Bestvina and M. Feighn, A combination theorem for negatively curved groups, J. Diff. Geom. 35 (1992), no. 1, 85–101.
  • —, Stable actions of groups on real trees, Invent. Math. 121 (1995), no. 2, 287–321.
  • N. Brady and M. Forester, Density of isoperimetric spectra, Geom. Topol. 14 (2010), no. 1, 435–472.
  • U. Bader, A. Furman, T. Gelander, and N. Monod, Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007), 57–105.
  • M. Bestvina, M. Feighn, and M. Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997), 215–244.
  • —, The Tits alternative for $\textrm {Out}(F_ n)$. I. Dynamics of exponentially-growing automorphisms., Ann. of Math. 151 (2000), no. 2, 517–623.
  • —, Solvable subgroups of $\textrm {Out}(F_n)$ are virtually Abelian, Geom. Dedicata 104 (2004), 71–96.
  • —, The Tits alternative for $\textrm {Out}(F_n)$. II. A Kolchin type theorem, Ann. of Math. (2) 161 (2005), no. 1, 1–59.
  • E. Breuillard and T. Gelander, On dense free subgroups of Lie groups, J. Algebra 261 (2003), no. 2, 448–467.
  • J. Bourgain and A. Gamburd, Uniform expansion bounds for Cayley graphs of $\textrm {SL}_2(\mathbb F_p)$, Ann. of Math. (2) 167 (2008), no. 2, 625–642.
  • E. Breuillard and T. Gelander, Uniform independence in linear groups, Inventiones Math. 173 (2008), 225–263.
  • E. Breuillard and B. Green, Approximate groups III: the unitary case, Turkish J. Math. 36 (2012), no. 2, 199–215.
  • U. Bader, T. Gelander, and N. Monod, A fixed point theorem for $L^1$ spaces, Invent. Math. 189 (2012), no. 1, 143–148.
  • W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of non-positive curvature, Progress in Math., vol. 61, Birkhauser, 1985.
  • E. Breuillard, B. Green, and T. Tao, Approximate subgroups of linear groups, Geom. Funct. Anal. 21 (2011), no. 4, 774–819.
  • E. Breuillard, B. Green, and T. Tao, The structure of approximate groups, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 115–221.
  • H.-J. Bandelt and J. Hedlikova, Median algebras, Discrete Math. 45 (1983), 1–30.
  • M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.
  • M. Bridson and J. Howie, Conjugacy of finite subsets in hyperbolic groups, Internat. J. Algebra Comput. 5 (2005), 725–756.
  • R. Bieri, Homological dimension of discrete groups, Mathematical Notes, Queen Mary College, 1976.
  • —, Normal subgroups in duality groups and in groups of cohomological dimension $2$, J. Pure Appl. Algebra 1 (1976), 35–51.
  • —, Finitely presented soluble groups, Séminaire d’Algèbre Paul Dubreil 31ème année (Paris, 1977–1978), Lecture Notes in Math., vol. 740, Springer, Berlin, 1979, pp. 1–8.
  • S. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001), no. 2, 471–486.
  • J. Behrstock, T. Januszkiewicz, and W. Neumann, Commensurability and QI classification of free products of finitely generated abelian groups, Proc. Amer. Math. Soc. 137 (2009), no. 3, 811–813.
  • —, Quasi-isometric classification of some high dimensional right-angled Artin groups, Groups Geom. Dyn. 4 (2010), no. 4, 681–692.
  • M. Bożejko, T. Januszkiewicz, and R. Spatzier, Infinite Coxeter groups do not have Property (T), J. Op. Theory 19 (1988), 63–67.
  • G. Birkhoff and S. A. Kiss, A ternary operation in distributive lattices, Bull. Amer. Math. Soc. 53 (1947), 749–752.
  • P. Buser and H. Karcher, Gromov’s almost flat manifolds, Astérisque, vol. 81, Société Mathématique de France, Paris, 1981.
  • D. Burago and B. Kleiner, Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal. 8 (1998), no. 2, 273–282.
  • M. Bonk and B. Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127–183.
  • D. Burago and B. Kleiner, Rectifying separated nets, Geom. Funct. Anal. 12 (2002), 80–92.
  • M. Bonk and B. Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219–246 (electronic).
  • M. Bourdon and B. Kleiner, Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn. 7 (2013), no. 1, 39–107.
  • J. Behrstock, B. Kleiner, Y. Minsky, and L. Mosher, Geometry and rigidity of mapping class groups, Geom. Topol. 16 (2012), no. 2, 781–888.
  • M. Bestvina, B. Kleiner, and M. Sageev, The asymptotic geometry of right-angled Artin groups. I, Geom. Topol. 12 (2008), no. 3, 1653–1699.
  • Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000.
  • A. Bartels and W. Lück, The Borel conjecture for hyperbolic and $\textrm {CAT}(0)$-groups, Ann. of Math. (2) 175 (2012), no. 2, 631–689.
  • A. Bartels, W. Lück, and S. Weinberger, On hyperbolic groups with spheres as boundary, J. Differential Geom. 86 (2010), no. 1, 1–16.
  • M. Bestvina and G. Mess, The boundary of negatively curved groups, Jour. Amer. Math. Soc. 4 (1991), 469–481.
  • M. Burger and S. Mozes, Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. (2000), no. 92, 151–194.
  • G. Baumslag, A. Myasnikov, and V. Shpilrain, Open problems in combinatorial and geometric group theory, http://www.sci.ccny.cuny.edu/$\sim$shpil/gworld/problems/ oproblems.html, 2012.
  • J. Behrstock and W. Neumann, Quasi-isometric classification of graph manifold groups, Duke Math. J. 141 (2008), 217–240.
  • —, Quasi-isometric classification of non-geometric 3-manifold groups, Crelle Journal 669 (2012), 101–120.
  • B. Bollobás, Graph theory, an introductory course, Graduate Texts in Mathematics, vol. 63, Springer, 1979.
  • M. Bonk, Uniformization of Sierpinski carpets in the plane, Inventiones Math. 186 (2011), 559–665.
  • W. Boone, Certain simple, unsolvable problems of group theory. V, VI, Nederl. Akad. Wetensch. Proc. Ser. A. 60, Indag. Math. 19 (1957), 22–27, 227–232.
  • A. Borel, Density properties for certain subgroups of semisimple groups without compact components, Ann. of Math. 72 (1960), 179–188.
  • —, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111–122.
  • N. Bourbaki, Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, Paris, 1963.
  • —, Topologie générale, Hermann, Paris, 1965.
  • M. Bourdon, Sur les immeubles fuchsiens et leur type de quasi-isométrie, Ergodic Th. & Dyn. Sys. 20 (2000), no. 2, 343–364.
  • N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, Translated from the 1968 French original by Andrew Pressley.
  • M. Bourdon, Cohomologie et actions isométriques propres sur les espaces $L_p$, Geometry, topology, and dynamics in negative curvature, London Math. Soc. Lecture Note Ser., vol. 425, Cambridge Univ. Press, Cambridge, 2016, pp. 84–109.
  • B. Bowditch, Notes on Gromov’s hyperbolicity criterion for path-metric spaces, “Group theory from a geometrical point of view”; ICTP, Trieste April 1990 (E. Ghys, A. Haefliger, and A. Verjovsky, eds.), 1991, pp. 64–167.
  • —, Some results on the geometry of convex hulls in manifolds of pinched negative curvature, Comment. Math. Helv. 69 (1994), no. 1, 49–81.
  • —, A short proof that a sub-quadratic isoperimetric inequality implies a linear one, Mich. J. Math. 42 (1995), 103–107.
  • —, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995), no. 1, 229–274.
  • —, Continuously many quasi-isometry classes of $2$-generator groups, Comment. Math. Helv. 73 (1998), no. 2, 232–236.
  • —, A topological characterisation of hyperbolic groups, Jour. Amer. Math. Soc. 11 (1998), no. 3, 643–667.
  • B. H. Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998), no. 2, 145–186.
  • B. Bowditch, A course on geometric group theory, MSJ Memoirs, vol. 16, Mathematical Society of Japan, Tokyo, 2006.
  • —, Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math. 598 (2006), 105–129.
  • —, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, 1250016, 66.
  • —, Some properties of median metric spaces, Groups, Geom. and Dyn. 10 (2016), 279–317.
  • M. Bożejko, Uniformly amenable discrete groups, Math. Ann. 251 (1980), 1–6.
  • R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Springer, 1992.
  • M. Bourdon and H. Pajot, Rigidity of quasi-isometries for some hyperbolic buildings, Comment. Math. Helv. 75 (2000), no. 4, 701–736.
  • —, Cohomologie $l_p$ et espaces de Besov, J. Reine Angew. Math. 558 (2003), 85–108.
  • N. Brady, Branched coverings of cubical complexes and subgroups of hyperbolic groups, J. London Math. Soc. (2) 60 (1999), no. 2, 461–480.
  • L. Breiman, Probability, Classics in Applied Mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992, Corrected reprint of the 1968 original.
  • W. Breslin, Thick triangulations of hyperbolic $n$-manifolds, Pacific J. Math. 241 (2009), no. 2, 215–225.
  • E. Breuillard, Expander graphs, property $(\tau )$ and approximate groups, in Geometric group theory, IAS/Park City Math. Ser. 21, 325–377, Amer. Math. Soc., Providence, RI, 2014.
  • P. Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000), no. 5, 1071–1089.
  • R. Brooks, The fundamental group and the spectrum of the Laplacian, Comment. Math. Helv. 56 (1981), no. 4, 581–598.
  • —, Some remarks on bounded cohomology, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 53–63.
  • —, Amenability and the spectrum of the Laplacian, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 87–89.
  • K. Brown, Cohomology of groups, Graduate Texts in Math., vol. 87, Springer, 1982.
  • —, Finiteness properties of groups, J. Pure Appl. Algebra 44 (1987), 45–75.
  • J. Bell and A. Slomson, Models and ultraproducts, North-Holland, Amsterdam, 1969.
  • R. Bieri and R. Strebel, Almost finitely presented soluble groups, Comm. Math. Helv. 53 (1978), 258–278.
  • —, Valuations and finitely presented metabelian groups, Proc. London Math. Soc. 41 (1980), no. 3, 439–464.
  • W. Ballmann and J. Świa̧tkowski, On $l^2$-cohomology and property (T) for automorphism groups of polyhedral cell complexes, Geom. Funct. Anal. 7 (1997), no. 4, 615–645.
  • I. Benjamini and O. Schramm, Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geom. Funct. Anal. 7 (1997), 403–419.
  • W. Ballman and J. Świa̧tkowski, On groups acting on nonpositively curved cubical complexes, Enseignement Math. 45 (1999), 51–81.
  • M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266–306.
  • S. Banach and A. Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes, Fundamenta Mathematicae 6 (1924), 244–277.
  • J. Burillo and J. Taback, Equivalence of geometric and combinatorial Dehn functions, New York J. Math. 8 (2002), 169–179 (electronic).
  • J. Burillo, Dimension and fundamental groups of asymptotic cones, J. London Math. Soc. (2) 59 (1999), 557–572.
  • H. Busemann, Extremals on closed hyperbolic space forms, Tensor (N.S.) 16 (1965), 313–318.
  • P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230.
  • —, Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2010, Reprint of the 1992 edition.
  • M. Burger and A. Valette, Idempotents in complex group rings: theorems of Zalesskii and Bass revisited, Journal of Lie Theory (1998), 219–228.
  • M. Bridson and H. Wilton, On the difficulty of presenting finitely presentable groups, Groups Geom. Dyn. 5 (2011), no. 2, 301–325.
  • Yu. Burago and V. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften, vol. 285, Springer-Verlag, 1988.
  • S. S. Cairns, A simple triangulation method for smooth manifolds, Bull. Amer. Math. Soc. 67 (1961), 389–390.
  • D. Calegari, Length and stable length, Geom. Funct. Anal. 18 (2008), no. 1, 50–76.
  • —, scl, MSJ Memoirs, vol. 20, Mathematical Society of Japan, Tokyo, 2009.
  • P.-E. Caprace, A sixteen-relator presentation of an infinite hyperbolic kazhdan group, Preprint, 2017.
  • M. Carette, The Haagerup property is not invariant under quasi-isometry, preprint, arXiv:1403.5446, 2014.
  • J. W. Cassels, Local fields, Cambridge University Press, 1986.
  • C. Cashen, Quasi-isometries between tubular groups, Groups, Geometry and Dynamics 4 (2010), 473–516.
  • J. Cannon and D. Cooper, A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three, Trans. Amer. Math. Soc. 330 (1992), 419–431.
  • I. M. Chiswell, D. J. Collins, and J. Huebschmann, Aspherical group presentations, Math. Z. 178 (1981), no. 1, 1–36.
  • P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette, Groups with the Haagerup property. Gromov’s a-T-menability, Progress in Mathematics, vol. 197, Birkhäuser, 2001.
  • I. Chatterji and C. Druţu, Median geometry for spaces with measured walls and for groups, preprint, arXiv:1708.00254, 2017.
  • M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lec. Notes Math., vol. 1441, Springer-Verlag, 1990.
  • J. Cheeger, M. Gromov, and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), no. 1, 15–53.
  • I. Chavel, Isoperimetric inequalities, Cambridge Tracts in Mathematics, vol. 145, Cambridge University Press, Cambridge, 2001, Differential geometric and analytic perspectives.
  • —, Riemannian geometry, second ed., Cambridge Studies in Advanced Mathematics, vol. 108, Cambridge University Press, Cambridge, 2006, A modern introduction.
  • J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N. J., 1970, pp. 195–199.
  • S. Chern, Complex manifolds without potential theory (with an appendix on the geometry of characteristic classes), second ed., Universitext, Springer-Verlag, New York, 1995.
  • V. Chepoi, Graphs of some CAT(0) complexes, Adv. in Appl. Math. 24 (2000), 125–179.
  • C. Chou, Elementary amenable groups, Illinois J. Math. 24 (1980), no. 3, 396–407.
  • R. Chow, Groups quasi-isometric to complex hyperbolic space, Trans. Amer. Math. Soc. 348 (1996), no. 5, 1757–1769.
  • A. Casson and D. Jungreis, Convergence groups and Seifert-fibered $3$-manifolds, Inventiones Mathematicae 118 (1994), 441–456.
  • D. J. Collins and F. Levin, Automorphisms and Hopficity of certain Baumslag-Solitar groups, Arch. Math. (Basel) 40 (1983), no. 5, 385–400.
  • D. J. Collins and C. F. Miller, III, The conjugacy problem and subgroups of finite index, Proc. London Math. Soc. (3) 34 (1977), no. 3, 535–556.
  • P.A. Cherix, F. Martin, and A. Valette, Spaces with measured walls, the Haagerup property and property (T), Ergod. Th. & Dynam. Sys. 24 (2004), 1895–1908.
  • I. Chatterji and G. Niblo, From wall spaces to $\rm CAT(0)$ cube complexes, Internat. J. Algebra Comput. 15 (2005), no. 5-6, 875–885.
  • —, A characterization of hyperbolic spaces, Groups, Geometry and Dynamics 1 (2007), no. 3, 281–299.
  • W. W. Comfort, Topological groups, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 1143–1263.
  • K. Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2) 135 (1992), no. 1, 165–182.
  • L. Carbone and E. Rips, Reconstructing group actions, Internat. J. Algebra Comput. 23 (2013), no. 2, 255–323.
  • Th. Coulhon and L. Saloff-Coste, Isopérimétrie pour les groupes et variétés, Rev. Math. Iberoamericana 9 (1993), 293–314.
  • T. Ceccherini-Silberstein, R. Grigorchuk, and P. de la Harpe, Décompositions paradoxales des groupes de Burnside, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 2, 127–132.
  • N. J. Cutland, Loeb measures in practice: Recent advances, Lecture Notes in Mathematics, vol. 1751, Springer-Verlag, Berlin, 2001.
  • S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354.
  • F. Dahmani, Combination of convergence groups, Geometry and Topology 7 (2003), 933–963.
  • —, Les groupes relativement hyperboliques et leurs bords, Ph.D. thesis, University of Strasbourg, 2003.
  • M. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008.
  • M.M. Day, Means for the bounded functions and ergodicity of the bounded representations of semi-groups, Trans. Amer. Math. Soc. 69 (1950), 276–291.
  • —, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544.
  • M. P. do Carmo, Riemannian geometry, Birkhäuser Boston Inc., Boston, MA, 1992.
  • Y. de Cornulier, Strongly bounded groups and infinite powers of finite groups, Comm. Algebra 34 (2006), 2337–2345.
  • —, Dimension of asymptotic cones of Lie groups, J. Topology 1 (2008), no. 2, 343–361.
  • —, Asymptotic cones of Lie groups and cone equivalences, Illinois J. Math. 55 (2011), no. 1, 237–259.
  • Y. de Cornulier, R. Tessera, and A. Valette, Isometric group actions on Banach spaces and representations vanishing at infinity, Transform. Groups 13 (2008), no. 1, 125–147.
  • W. Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge University Press, Cambridge-New York, 1989.
  • K. Dekimpe and J. Deré, Expanding maps and non-trivial self-covers on infra-nilmanifolds, Topol. Methods Nonlinear Anal. 47 (2016), no. 1, 347–368.
  • L. Van den Dries and A. Wilkie, Gromov’s theorem on groups of polynomial growth and elementary logic, J. Algebra 89 (1984), 349–374.
  • P. Delorme, $1$-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels et représentations, Bull. Soc. Math. France 105 (1977), 281–336.
  • T. Delzant, Sous-groupes distingués et quotients des groupes hyperboliques, Duke Math. J. 83 (1996), no. 3, 661–682.
  • D. S. Dummit and R. M. Foote, Abstract algebra, third ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004.
  • T. Delzant and M. Gromov, Groupes de Burnside et géométrie hyperbolique, preprint.
  • F. Dahmani and D. Groves, The isomorphism problem for toral relatively hyperbolic groups, Publ. Math. of IHES 107 (2008), 211–290.
  • F. Dahmani and V. Guirardel, The isomorphism problem for all hyperbolic groups, Geom. Funct. Anal. 21 (2011), 223–300.
  • A. Dold, Lectures on algebraic topology, second ed., Grundlehren der Math. Wissenschaften, vol. 200, Springer, 1980.
  • A. N. Dranishnikov, G. Gong, V. Lafforgue, and G. Yu, Uniform embeddings into Hilbert space and a question of Gromov, Canad. Math. Bull. 45 (2002), no. 1, 60–70.
  • F. Dahmani, V. Guirardel, and P. Przytycki, Random groups do not split, Mathematische Annalen 349 (2011), 657–673.
  • P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, 2000.
  • P. de la Harpe, R. I. Grigorchuk, and T. Ceccherini-Sil′berstaĭn, Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces, Proc. Steklov Inst. Math. 224 (1999), 57–97.
  • P. de la Harpe and A. Valette, La propriété (T) de Kazhdan pour les groupes localemant compacts, Astérisque, vol. 175, Société Mathématique de France, 1989.
  • C. Druţu and J. Mackay, Random groups, random graphs and eigenvalues of $p$-Laplacians, preprint, arXiv:1607.04130, 2016.
  • J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), no. 2, 787–794.
  • A. Dyubina and I. Polterovich, Structures at infinity of hyperbolic spaces, Russian Math. Surveys 53 (1998), no. 5, 1093–1094.
  • —, Explicit constructions of universal $\R$–trees and asymptotic geometry of hyperbolic spaces, Bull. London Math. Soc. 33 (2001), 727–734.
  • T. Dymarz, I. Peng, and J. Taback, Bilipschitz versus quasi-isometric equivalence for higher rank lamplighter groups, New York J. Math. 21 (2015), 129–150.
  • M. Duchin and K. Rafi, Divergence of geodesics in Teichmüller space and the Mapping Class group, Geom. Funct. Anal. 19 (2009), 722–742.
  • W. Dison and T. Riley, Hydra groups, Comment. Math. Helv. 88 (2013), no. 3, 507–540.
  • A. W. M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. in Math. 53 (1984), no. 3, 321–402.
  • C. Druţu, Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank, Geom. Funct. Anal. 10 (2000), no. 2, 327–388.
  • —, Cônes asymptotiques et invariants de quasi-isométrie pour des espaces métriques hyperboliques, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 1, 81–97.
  • —, Relatively hyperbolic groups: geometry and quasi-isometric invariance, Comment. Math. Helv. 84 (2009), no. 3, 503–546.
  • P. G. Doyle and J. L. Snell, Random walks and electric networks, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984.
  • N. Dunford and J. T. Schwartz, Linear operators. Part I. General theory., John Wiley & Sons, Inc., New York, 1988.
  • M. J. Dunwoody and M. Sageev, JSJ splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999), no. 1, 25–44.
  • C. Druţu and M. Sapir, Relatively hyperbolic groups with rapid decay property, Int. Math. Res. Notices 19 (2005), 1181–1194.
  • —, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005), 959–1058, with an appendix by D. Osin and M. Sapir.
  • —, Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups, Adv. Math. 217 (2007), 1313–1367.
  • W. A. Deuber, M. Simonovits, and V. T. Sós, A note on paradoxical metric spaces, Studia Sci. Math. Hungar. 30 (1995), no. 1-2, 17–23.
  • M. J. Dunwoody, The accessibility of finitely presented groups, Inventiones Mathematicae 81 (1985), 449–457.
  • —, An inaccessible group, Geometric group theory, Vol. 1 (Sussex, 1991) (G. A. Niblo and M. A. Roller, eds.), London Math. Soc. Lecture Note Ser., vol. 181, Cambridge Univ. Press, Cambridge, 1993, pp. 75–78.
  • M. Van de Vel, Dimension of binary convex structures, Proc. London Math. Soc. 48 (1984), no. 3, 24–54.
  • T. Dymarz, Bilipschitz equivalence is not equivalent to quasi-isometric equivalence for finitely generated groups, Duke Math. J. 154 (2010), no. 3, 509–526.
  • A. Dyubina, Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups, Internat. Math. Res. Notices 21 (2000), 1097–1101.
  • P. Eberlein, Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.
  • D. B. A. Epstein, J. Cannon, D. F. Holt, S. Levy, M. S. Paterson, and W. P. Thurston, Word processing and group theory, Jones and Bartlett, 1992.
  • D. B. A. Epstein and K. Fujiwara, The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997), no. 6, 1275–1289.
  • A. Eskin and B. Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997), no. 3, 653–692.
  • V. Efremovich, The proximity geometry of Riemannian manifolds, Uspehi Matem. Nauk (N.S.) 8 (1953), 189.
  • A. Eskin, D. Fisher, and K. Whyte, Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs, Ann. of Math. (2) 176 (2012), no. 1, 221–260.
  • —, Coarse differentiation of quasi-isometries II: Rigidity for Sol and lamplighter groups, Ann. of Math. (2) 177 (2013), no. 3, 869–910.
  • M. Ershov, G. Golan, and M. Sapir, The Tarski numbers of groups, Adv. Math. 284 (2015), 21–53.
  • R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, 1995.
  • P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109.
  • A. Erschler, On isoperimetric profiles of finitely generated groups, Geometriae Dedicata 100 (2003), 157–171.
  • —, Not residually finite groups of intermediate growth, commensurability and non-geometricity, J. Algebra 272 (2004), no. 1, 154–172.
  • —, Piecewise automatic groups, Duke Math. J. 134 (2006), no. 3, 591–613.
  • M. Ershov, Golod-Shafarevich groups with property (T) and Kac-Moody groups, Duke Math. J. 145 (2008), no. 2, 309–339.
  • —, Kazhdan quotients of Golod-Shafarevich groups, Proc. Lond. Math. Soc. (3) 102 (2011), no. 4, 599–636.
  • A. Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998), no. 2, 321–361.
  • J. Essert, A geometric construction of panel-regular lattices for buildings of types $\tilde {A}_2$ and $\tilde {C}_2$, Algebr. Geom. Topol. 13 (2013), no. 3, 1531–1578.
  • V. Efremovich and E. Tihomirova, Equimorphisms of hyperbolic spaces, Izv. Akad. Nauk SSSR 28 (1964), 1139– 1144.
  • B. Farb, The quasi-isometry classification of lattices in semisimple Lie groups, Math. Res. Letters 4 (1997), no. 5, 705–717.
  • —, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810–840.
  • H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.
  • H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520.
  • J. Faraut and K. Harzallah, Distances hilbertiennes invariantes sur un espace homogène, Ann. Institut Fourier 3 (1974), no. 24, 171–217.
  • W. Fulton and J. Harris, Representation theory: A first course, Springer, 1994.
  • E. Fioravanti, Roller boundaries for median spaces and algebras, preprint, arXiv:1708.01005, 2017.
  • R. Fleming and J. Jamison, Isometries on Banach spaces: Function spaces, Monographs and Surveys in Pure and Applied Mathematics, CRC Press, 2003.
  • K. Fujiwara and M. Kapovich, On quasihomomorphisms with noncommutative targets, Geom. Funct. Anal. 26 (2016), no. 2, 478–519.
  • R. Frigerio, J.-F. Lafont, and A. Sisto, Rigidity of high dimensional graph manifolds, Astérisque (2015), no. 372, xxi+177.
  • B. Farb and L. Mosher, A rigidity theorem for the solvable Baumslag–Solitar groups, Invent. Math. 131 (1998), no. 2, 419–451, With an appendix by Daryl Cooper.
  • —, Quasi-isometric rigidity for the solvable Baumslag–Solitar groups, II, Invent. Math. 137 (1999), no. 3, 613–649.
  • —, On the asymptotic geometry of abelian-by-cyclic groups, Acta Math. 184 (2000), no. 2, 145–202.
  • B. Farb and D. Margalit, A primer on mapping class groups, Princeton University Press, 2011.
  • D. Fisher and T. Nguyen, Quasi-isometric embeddings of non-uniform lattices, preprint, arXiv:1512.07285, 2015.
  • G. Folland, Real analysis: Modern techniques and their applications, Pure and Applied Mathematics, Wiley–Interscience, 1999.
  • E. Formanek, Idempotents in noetherian group rings, Canad. J. Math. 25 (1973), 366–369.
  • R. H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560.
  • K. Fujiwara and P. Papasoglu, JSJ-decompositions of finitely presented groups and complexes of groups, Geom. Funct. Anal. 16 (2006), no. 1, 70–125.
  • A. A. Fridman, On the relation between the word problem and the conjugacy problem in finitely defined groups, Trudy Moskov. Mat. Obšč. 9 (1960), 329–356.
  • J. Friedman, On the second eigenvalue and random walks in random d-regular graphs, Combinatorica 11 (1991), no. 4, 331–362.
  • M. Freedman and R. Skora, Strange actions of groups on spheres. II, “Holomorphic functions and moduli”, Vol. II (Berkeley, CA, 1986), Springer, New York, 1988, pp. 41–57.
  • B. Farb and R. Schwartz, The large-scale geometry of Hilbert modular groups, J. Differential Geom. 44 (1996), no. 3, 435–478.
  • M. Foreman and F. Wehrung, The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set, Fundam. Math. 138 (1991), 13–19.
  • D. Fisher and K. Whyte, Quasi-isometric embeddings of symmetric spaces, preprint, arXiv:1407.0445, 2014.
  • P. Günther, Einige Sätze über das Volumenelement eines Riemannschen Raumes, Publ. Math. Debrecen 7 (1960), 78–93.
  • D. Gabai, Convergence groups are Fuchsian groups, Annals of Math. 136 (1992), 447–510.
  • D. Gaboriau, Examples of groups that are measure equivalent to the free group, Ergodic Theory Dynam. Systems 25 (2005), no. 6, 1809–1827.
  • —, Orbit equivalence and measured group theory, Proceedings of the International Congress of Mathematicians. Volume III (New Delhi), Hindustan Book Agency, 2010, pp. 1501–1527.
  • H. Garland, $p$-adic curvature and cohomology of discrete subgroups of $p$-adic groups, Ann. of Math. 97 (1973), 375–423.
  • C. F. Gauß, Werke. Band VIII, Georg Olms Verlag, Hildesheim, 1973, Reprint of the 1900 original.
  • F. M. Goodman, P. de la Harpe, and V. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989.
  • E. Ghys and P. de la Harpe, Sur les groupes hyperboliques d’apres Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser, 1990.
  • T. Gelander, Volume versus rank of lattices, J. Reine Angew. Math. 661 (2011), 237–248.
  • —, Lectures on lattices and locally symmetric spaces, Geometric group theory, IAS/Park City Math. Ser., vol. 21, Amer. Math. Soc., Providence, RI, 2014, pp. 249–282.
  • R. Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics, vol. 243, Springer, New York, 2008.
  • S. Gersten, Reducible diagrams and equations over groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 15–73.
  • —, Bounded cocycles and combings of groups, Internat. J. Algebra Comput. 2 (1992), no. 3, 307–326.
  • —, Isoperimetric and isodiametric functions of finite presentations, Geometric group theory, Vol. 1 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 181, Cambridge Univ. Press, Cambridge, 1993, pp. 79–96.
  • —, Quasi-isometry invariance of cohomological dimension, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 5, 411–416.
  • —, Quadratic divergence of geodesics in CAT(0)-spaces, Geom. Funct. Anal. 4 (1994), no. 1, 37–51.
  • V. Gerasimov, Expansive convergence groups are relatively hyperbolic, Geom. Funct. Anal. 19 (2009), no. 1, 137–169.
  • —, Floyd maps for relatively hyperbolic groups, Geom. Funct. Anal. 22 (2012), no. 5, 1361–1399.
  • S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, third ed., Universitext, Springer-Verlag, Berlin, 2004.
  • E. Ghys, Groupes aléatoires (d’après Misha Gromov,$\dots$), Astérisque (2004), no. 294, viii, 173–204.
  • R. Goldblatt, Lectures on the hyperreals. An introduction to nonstandard analysis, Graduate Texts in Mathematics, vol. 188, Springer-Verlag, New York, 1998.
  • V. Guillemin and A. Pollack, Differential topology, AMS Chelsea Publishing, Providence, RI, 2010, Reprint of the 1974 original.
  • V. Gerasimov and L. Potyagailo, Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 6, 2115–2137.
  • M. Gromov and I. Piatetski-Shapiro, Non-arithmetic groups in Lobacevski spaces, Publ. Math. IHES 66 (1988), 93–103.
  • L. Greenberg, Discrete subgroups of the Lorentz group, Math. Scand. 10 (1962), 85–107.
  • R. I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR 271 (1983), no. 1, 30–33.
  • —, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985.
  • —, The growth rate of finitely generated groups and the theory of invariant means, Inv. Akad. Nauk. 45 (1984), 939–986.
  • —, Superamenability and the problem of occurence of free semigroups, Functional Analysis and its Applications 21 (1987), 64–66.
  • —, An example of a finitely presented amenable group that does not belong to the class EG, Mat. Sb. 189 (1998), no. 1-2, 75–95.
  • H. Groetzsch, Über einige Extremalprobleme der konformen Abbildung. I, II., Berichte Leipzig 80 (1928), 367–376, 497–502.
  • M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHES 53 (1981), 53–73.
  • —, Hyperbolic manifolds, groups and actions, Annals of Mathematics Studies, vol. 97, Princeton University Press, Princeton, 1981.
  • —, Volume and bounded cohomology, Publ. Math. IHES (1982), no. 56, 5–99.
  • —, Infinite groups as geometric objects, Proceedings of the International Congress of Mathematicians, Warsaw, Amer. Math. Soc., 1983, pp. 385–392.
  • —, Isoperimetric inequalities in Riemannian manifolds, “Asymptotic Theory of Finite Dimensional Normed Spaces”, Lecture Notes Math., vol. 1200, Springer-Verlag, Berlin, 1986, pp. 114–129.
  • —, Hyperbolic groups, “Essays in group theory”, Math. Sci. Res. Ins. Publ., vol. 8, Springer, 1987, pp. 75–263.
  • —, Asymptotic invariants of infinite groups, Geometric Group Theory, Vol. 2 (Sussex, 1991) (G. Niblo and M. Roller, eds.), LMS Lecture Notes, vol. 182, Cambridge Univ. Press, 1993, pp. 1–295.
  • —, Spaces and questions, Geom. Funct. Anal. Special Volume, Part I (2000), 118–161.
  • —, Random walk in random groups, Geom. Funct. Anal. 13 (2003), no. 1, 73–146.
  • —, Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2007, based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes.
  • C. Groft, Generalized Dehn functions I, arXiv:0901.2303, 2009.
  • K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. 7 (1957), 29–62.
  • S. Gersten and H. Short, Small cancellation theory and automatic groups, Invent. Math. 102 (1990), 305–334.
  • M. Gromov and R. Schoen, Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one, Publ. Math. of IHES 76 (1992), 165–246.
  • D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, vol. 224, Springer Verlag, Grundlehren der Mathematischen Wissenschaften, 1983.
  • M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Inventiones Mathematicae 89 (1987), 1–12.
  • Y. Guivarc’h, Groupes de Lie à croissance polynomiale, C. R. Acad. Sci. Paris, Ser. A—B 271 (1970), A237–A239.
  • —, Croissance polynomiale et périodes des fonctions harmonique, Bull. Soc. Math. France 101 (1973), 333–379.
  • A. Guichardet, Étude de la $1$-cohomologie et de la topologie du dual pour les groupes de Lie à radical abélien, Math. Ann. 228 (1977), no. 1, 215–232.
  • A. Haefliger, Extension of complexes of groups, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 275–311.
  • P. Haïssinsky, Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités [d’après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner$\ldots$], Astérisque (2009), no. 326, Exp. No. 993, ix, 321–362 (2010), Séminaire Bourbaki. Vol. 2007/2008.
  • —, Hyperbolic groups with planar boundaries, Invent. Math. 201 (2015), no. 1, 239–307.
  • M. Hall, Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421–432.
  • J. Halpern, The independence of the axiom of choice from the boolean prime ideal theorem, Fund. Math. 55 (1964), 57–66.
  • M. Hall, The theory of groups, Chelsea Publishing Co., New York, 1976, Reprinting of the 1968 edition.
  • U. Hamenstädt, Geometry of complex of curves and Teichmüller spaces, Handbook of Teichmüller Theory, vol. 1, EMS, 2007, pp. 447–467.
  • A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
  • F. Hausdorff, Bemerkung ber den inhalt von Punktmengen, Mathematische Annalen 75 (1914), 428–434.
  • J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.
  • —, Lectures on Lipschitz analysis, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 100, University of Jyväskylä, Jyväskylä, 2005.
  • S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, Amer. Math. Soc., 2001.
  • J. Hempel, 3-manifolds, Annals of Mathematics Studies, Princeton University Press, 1978.
  • —, Residual finiteness for $3$-manifolds, “Combinatoral group theory and topology” (S.M. Gersten and J.R. Stallings, eds.), Annals of Mathematics Studies, vol. 111, Princeton University Press, Princeton, 1987, pp. 379–396.
  • G. Higman, The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231–248.
  • K. A. Hirsch, On infinite soluble groups, II, Proc. Lond. Math. Soc. 44 (1938), 336–344.
  • M. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer, 1976.
  • J. Hagauer, W. Imrich, and S. Klavžar, Recognizing median graphs in subquadratic time, Theoretical Computer Science 215 (1999), 123–136.
  • K. Hrbacek and T. Jech, Introduction to set theory, third ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 220, Marcel Dekker Inc., New York, 1999.
  • J. Heinonen and P. Koskela, Definitions of quasiconformality, Inventiones Math. 120 (1995), 61–79.
  • —, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61.
  • G. Higman, B. H. Neumann, and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247–254.
  • E. Hille and R. Phillips, Functional analysis and semi-groups, American Mathematical Society, Providence, R. I., 1974, Third printing of the revised edition of 1957, American Mathematical Society Colloquium Publications, Vol. XXXI.
  • F. Haglund and F. Paulin, Simplicité de groupes d’automorphismes d’espaces à courbure négative, The Epstein Birthday Schrift (C. Rourke, I. Rivin, and C. Series, eds.), Geometry and Topology Monographs, vol. 1, International Press, 1998, pp. 181–248.
  • E. Hrushovski, Stable group theory and approximate subgroups, Jour. Amer. Math. Soc. (2012), 189–243.
  • G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110–134.
  • F. Haglund and J. Świa̧tkowski, Separating quasi-convex subgroups in 7-systolic groups, Groups Geom. Dyn. 2 (2008), no. 2, 223–244.
  • J. Huang, Quasi-isometric classification of right-angled Artin groups I: the finite out case, arXiv:1410.8512, 2014.
  • —, Quasi-isometry classification of right-angled Artin groups II: several infinite out cases, arXiv:1603.02372, 2016.
  • A. Hulanicki, Means and Følner condition on locally compact groups, Studia Math. 27 (1966), 87–104.
  • J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1975, Graduate Texts in Mathematics, No. 21.
  • —, Reflection groups and Coxeter groups, Cambridge University Press, 1997, Cambridge Studies in Advanced Mathematics, Vol. 29.
  • T. W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York, 1980.
  • W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, 1941.
  • F. Haglund and D. Wise, A combination theorem for special cube complexes, Ann. of Math. (2) 176 (2012), no. 3, 1427–1482.
  • J. G. Hocking and G. S. Young, Topology, second ed., Dover Publications, Inc., New York, 1988.
  • T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, Oxford University Press, New York, 2001.
  • S. V. Ivanov and P. E. Schupp, On the hyperbolicity of small cancellation groups and one-relator groups, Trans. Amer. Math. Soc. 350 (1998), no. 5, 1851–1894.
  • N. A. Isachenko, Uniformly quasiconformal discontinuous groups that are not isomorphic to Möbius groups, Dokl. Akad. Nauk SSSR 313 (1990), no. 5, 1040–1043.
  • J. R. Isbell, Median algebra, Trans. Amer. Math. Soc. (1980), no. 260, 319–362.
  • N. Ivanov, Automorphisms of Teichmüller modular groups, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 199–270.
  • —, Subgroups of Teichmüller modular groups, Translations of Math. Monographs, vol. 115, AMS, 1992.
  • S. V. Ivanov, The free Burnside groups of sufficiently large exponents, Internat. J. Algebra Comput. 4 (1994), no. 1-2, ii+308 pp.
  • N. Ivanov, Actions of Moebius transformations on homeomorphisms: stability and rigidity, Geom. Funct. Anal. 6 (1996), 79–119.
  • Th. Jech, Set theory: The third millennium edition, revised and expanded, Springer Verlag, 2003.
  • F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187–204.
  • W. Jaco and J. H. Rubinstein, PL minimal surfaces in 3-manifolds, J. Diff. Geom. 27 (1988), no. 3, 493–524.
  • —, PL equivariant surgery and invariant decomposition of 3-manifolds, Advances in Math. 73 (1989), 149–191.
  • T. Januszkiewicz and J. Świa̧tkowski, Hyperbolic Coxeter groups of large dimension, Comment. Math. Helv. 78 (2003), no. 3, 555–583.
  • —, Simplicial nonpositive curvature, Publ. Math. Inst. Hautes Études Sci. (2006), no. 104, 1–85.
  • P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. of Math. 36 (1935), 719–723.
  • S. Kakutani, Concrete representation of abstract $(L)$-spaces and the mean ergodic theorem, Ann. of Math. (2) 42 (1941), 523–537.
  • I. Kaplansky, Fields and rings, The University of Chicago Press, 1969.
  • —, “Problems in the theory of rings” revisited, Amer. Math. Monthly 77 (1970), 445–454.
  • M. Kapovich, Intersection pairing on hyperbolic 4-manifolds, preprint, 1992.
  • I. Kapovich, Detecting quasiconvexity: algorithmic aspects, Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, Amer. Math. Soc., Providence, RI, 1996, pp. 91–99.
  • M. Kapovich, Hyperbolic manifolds and discrete groups, Birkhäuser Boston Inc., Boston, MA, 2001.
  • —, Representations of polygons of finite groups, Geom. Topol. 9 (2005), 1915–1951.
  • —, Kleinian groups in higher dimensions, “Geometry and Dynamics of Groups and Spaces. In memory of Alexander Reznikov”, vol. 265, Birkhauser, Progress in Mathematics, 2007, pp. 485–562.
  • —, Homological dimension and critical exponent of Kleinian groups, Geom. Funct. Anal. 18 (2009), no. 6, 2017–2054.
  • —, Energy of harmonic functions and Gromov’s proof of the Stallings’ theorem, Georgian Math. Journal 21 (2014), 281–296.
  • D. Kazhdan, On arithmetic varieties, Lie groups and their representations, Halsted, 1975, pp. 151–216.
  • I. Kapovich and N. Benakli, Boundaries of hyperbolic groups, Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math., vol. 296, Amer. Math. Soc., Providence, RI, 2002, pp. 39–93.
  • J. Keisler, Foundations of infinitesimal calculus, Prindel-Weber-Schmitt, Boston, 1976.
  • —, The ultraproduct construction. Ultrafilters across mathematics, Contemp. Math., vol. 530, Amer. Math. Soc., Providence, RI, 2010, pp. 163–179.
  • G. Keller, Amenable groups and varieties of groups, Illinois J. Math. 16 (1972), 257–268.
  • H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146–156.
  • M. Kapovich and B. Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 647–669.
  • —, Coarse Alexander duality and duality groups, Journal of Diff. Geometry 69 (2005), 279–352.
  • —, Appendix to “Lacunary hyperbolic groups”, by A. Olshanskii, D. Osin, M. Sapir, Geometry and Topology 13 (2009), 2132–2137.
  • M. Kotowski and M. Kotowski, Random groups and property $(T)$: Żuk’s theorem revisited, J. Lond. Math. Soc. (2) 88 (2013), no. 2, 396–416.
  • M. Kapovich, B. Kleiner, and B. Leeb, Quasi-isometries and the de Rham decomposition, Topology 37 (1998), 1193–1212.
  • M. Kapovich and B. Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of nonpositively curved manifolds, Geom. Funct. Anal. 5 (1995), no. 3, 582–603.
  • —, Quasi-isometries preserve the geometric decomposition of haken manifolds, Invent. Math. 128 (1997), no. 2, 393–416.
  • —, $3$-manifold groups and nonpositive curvature, Geom. Funct. Anal. 8 (1998), no. 5, 841–852.
  • B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Math. Publ. of IHES 86 (1998), 115–197.
  • —, Groups quasi-isometric to symmetric spaces, Comm. Anal. Geom. 9 (2001), no. 2, 239–260.
  • B. Kleiner and J. Lott, Notes on Perelman’s papers, Geometry & Topology 12 (2008), no. 5, 2587–2855.
  • B. Kleiner and B. Leeb, Induced quasi-actions: A remark, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1561–1567.
  • I. Kapovich and A. Lukyanenko, Quasi-isometric co-Hopficity of non-uniform lattices in rank-one semi-simple Lie groups, Conform. Geom. Dyn. 16 (2012), 269–282.
  • B. Kleiner, A new proof of Gromov’s theorem on groups of polynomial growth, J. Amer. Math. Soc. 23 (2010), no. 3, 815–829.
  • M. Kapovich, B. Leeb, and J. Porti, A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings, Preprint, arXiv:1411.4176, 2014, 2014.
  • O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra (1998), no. 2, 472–516.
  • —, Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998), no. 2, 517–570.
  • —, Tarski’s problem about the elementary theory of free groups has a positive solution, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 101–108 (electronic).
  • —, Implicit function theorem over free groups, J. Algebra 290 (2005), no. 1, 1–203.
  • J. Kahn and V. Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. (2) 175 (2012), no. 3, 1127–1190.
  • N. J. Kalton, N. T. Peck, and J. W. Roberts, An $F$-space sampler, London Math. Soc. Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984, xii+240 pp.
  • L. Kronecker, Zwei Sätze Über Gleichungen mit ganzzahligen Coefficienten, J. für Reine und Angewandte Mathematik 53 (1857), 173–175.
  • B. Krön, Cutting up graphs revisited—a short proof of Stallings’ structure theorem, Groups Complex. Cryptol. 2 (2010), no. 2, 213–221.
  • N. Korevaar and R. Schoen, Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom. 5 (1997), no. 2, 333–387.
  • I. Kapovich and P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383–404.
  • I. Kapovich, P. Schupp, and V. Shpilrain, Generic properties of Whitehead’s algorithm and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006), no. 1, 113–140.
  • L. Kramer, S. Shelah, K. Tent, and S. Thomas, Asymptotic cones of finitely presented groups, Adv. Math. 193 (2005), no. 1, 142–173.
  • N. H. Kuiper, On compact conformally Euclidean spaces of dimension $>2$, Ann. of Math. (2) 52 (1950), 478–490.
  • K. Kunen, Set theory: An introduction to independence proofs, Elsevier, 1980.
  • V. Kaimanovich and W. Woess, The Dirichlet problem at infinity for random walks on graphs with a strong isoperimetric inequality, Probab. Theory Related Fields 91 (1992), 445–466.
  • G. Kasparov and G. Yu, The Novikov conjecture and geometry of Banach spaces, Geom. Topol. 16 (2012), no. 3, 1859–1880.
  • J.-F. Lafont, Rigidity results for certain 3-dimensional singular spaces and their fundamental groups, Geom. Dedicata 109 (2004), 197–219.
  • S. Lang, Algebraic numbers, Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto-London, 1964.
  • U. Lang, Higher-dimensional linear isoperimetric inequalities in hyperbolic groups, Internat. Math. Res. Notices (2000), no. 13, 709–717.
  • S. Lang, Algebra, Addison-Wesley Publishing Company, 2002.
  • M. Lavrentieff, Sur un critère différentiel des transformations homeomorphes des domaines à trois dimensions., C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 20 (1938), 241–242.
  • S. R. Lee, Geometry of Houghton’s groups, preprint, arXiv:1212.0257, 2012.
  • O. Lehto, Univalent functions and Teichmüller spaces, Springer, 1987.
  • P. Li, Geometric analysis, Cambridge Studies in Advanced Mathematics, vol. 134, Cambridge University Press, Cambridge, 2012.
  • Y. Lodha and J. T. Moore, A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn. 10 (2016), no. 1, 177–200.
  • J. Łoś and C. Ryll-Nardzewski, On the application of Tychonoff’s theorem in mathematical proofs, Fund. Math. 38 (1951), 233–237.
  • R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89.
  • J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II: Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 97, Springer-Verlag, Berlin, 1979.
  • P. Li and L. Tam, Harmonic functions and the structure of complete manifolds, J. Differential Geom. 35 (1992), 359–383.
  • W. A. J. Luxemburg, Two applications of the method of construction by ultrapowers to anaylsis, Bull. Amer. Math. Soc. 68 (1962), 416–419.
  • —, Beweis des satzes von Hahn-Banach, Arch. Math (Basel) 18 (1967), 271–272.
  • —, Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 123–137.
  • I.G. Lysenok, Infinite Burnside groups of even exponent, Izvestiya Akad. Nauk. SSSR Ser., Mat 60 (1996), no. 3, 453–654.
  • N. Macura, CAT(0) spaces with polynomial divergence of geodesics, Geom. Dedicata 163 (2013), 361–378.
  • W. Magnus, On a theorem of Marshall Hall, Ann. of Math. (2) 40 (1939), 764–768.
  • A. I. Mal’cev, On isomorphic matrix representations of infinite groups, Mat. Sb. 8 (1940), 405–422.
  • —, Generalized nilpotent algebras and their associated groups, Mat. Sbornik N.S. 25(67) (1949), 347–366.
  • —, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR Ser., Mat 13 (1949), 9–32, Amer. Math. Soc. Translation No. 39 (1951).
  • —, On certain classes of infinite soluble groups, Mat. Sbornik 28 (1951), 567–588.
  • G. Martin, Discrete quasiconformal groups which are not quasiconformal conjugates of Mobius groups, Ann. Ac. Sci. Fenn. 11 (1986), 179–202.
  • G. A. Margulis, Discrete subgroups of semisimple Lie groups, Springer-Verlag, Berlin, 1991.
  • V. Markovic, Criterion for Cannon’s conjecture, Geom. Funct. Anal. 23 (2013), no. 3, 1035–1061.
  • W. S. Massey, A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127, Springer, 1991.
  • C. T. McMullen, Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8 (1998), no. 2, 304–314.
  • S. Merenkov, A Sierpinsky carpet with the co-hopfian property, Inventiones Math. 180 (2010), 361–388.
  • S. Meskin, Nonresidually finite one-relator groups, Trans. Amer. Math. Soc. 164 (1972), 105–114.
  • J. Milnor, Growth of finitely generated solvable groups, J. Diff. Geom. 2 (1968), 447–449.
  • —, A note on curvature and fundamental group, J. Diff. Geom. 2 (1968), 1–7.
  • —, Problem 5603, Amer. Math. Monthly 75 (1968), 685–686.
  • J. J. Millson, On the first betti number of a constant negatively curved manifold, Ann. of Math. 104 (1976), no. 2, 235–247.
  • —, Real vector bundles with discrete structure group, Topology 18 (1979), no. 1, 83–89.
  • J.S. Milne, Group theory, http://www.jmilne.org/math/CourseNotes/GT.pdf, 2012.
  • I. Mineyev, Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal. 11 (2001), no. 4, 807–839.
  • Y. Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2) 171 (2010), no. 1, 1–107.
  • M. Mj, Cannon-Thurston maps for surface groups, Ann. of Math. (2) 179 (2014), no. 1, 1–80.
  • —, Ending laminations and Cannon-Thurston maps, Geom. Funct. Anal. 24 (2014), no. 1, 297–321, With an appendix by Shubhabrata Das and Mj.
  • V. D. Mazurov and E. I. Khukhro, Unsolved problems in group theory. The Kourovka notebook, arXiv:1401.0300, 2014.
  • J. Meakin and K. S. S. Nambooripad, Coextensions of regular semigroups by rectangular bands. I, Trans. Amer. Math. Soc. 269 (1982), no. 1, 197–224.
  • J. C. Mayer, J. Nikiel, and L. G. Oversteegen, Universal spaces for $\R$-trees, Trans. Amer. Math. Soc. 334 (1992), no. 1, 411–432.
  • N. Monod, An invitation to bounded cohomology, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1183–1211.
  • M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Transactions of AMS 26 (1924), 25–60.
  • C. B. Morrey, On the solution of quasilinear elliptic partial differential equations, Transactions of AMS 43 (1938), 126–166.
  • G. D. Mostow, Quasiconformal mappings in $n$-space and the rigidity of hyperbolic space-forms, Publ. Math. IHES 34 (1965), 53–104.
  • —, Strong rigidity of locally symmetric spaces, Annals of Math. Studies, no. 78, Princeton Univ. Press, 1973.
  • G. Moussong, Hyperbolic Coxeter groups, Ph.D. thesis, The Ohio State University, 1988.
  • J. M. Mackay and P. Przytycki, Balanced walls for random groups, Michigan Math. J. 64 (2015), 397–419.
  • J. J. Millson and M. S. Raghunathan, Geometric construction of cohomology for arithmetic groups. I, Proc. Indian Acad. Sci. Math. Sci. 90 (1981), no. 2, 103–123.
  • C. Maclachlan and A. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003.
  • M. Mj and L. Reeves, A combination theorem for strong relative hyperbolicity, Geom. Topol. 12 (2008), no. 3, 1777–1798.
  • V. D. Milman and G. Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986, With an appendix by M. Gromov.
  • L. Mosher, M. Sageev, and K. Whyte, Quasi-actions on trees. I. Bounded valence, Ann. of Math. (2) 158 (2003), no. 1, 115–164.
  • —, Quasi-actions on trees II: Finite depth Bass-Serre trees, Mem. Amer. Math. Soc. 214 (2011), no. 1008, vi+105.
  • H. M. Mulder, The interval function of a graph, Mathematical Centre Tracts, vol. 132, Mathematisch Centrum, Amsterdam, 1980.
  • J. R. Munkres, Topology: a first course, Prentice-Hall Inc., 1975.
  • A. Muranov, Diagrams with selection and method for constructing boundedly generated and boundedly simple groups, Comm. Algebra 33 (2005), no. 4, 1217–1258.
  • W. Meeks and S.T. Yau, The equivariant Dehn’s lemma and equivariant loop theorem, Comment. Math. Helv. 56 (1981), 225– 239.
  • I. Mineyev and G. Yu, The Baum-Connes conjecture for hyperbolic groups, Invent. Math. 149 (2002), no. 1, 97–122.
  • D. Montgomery and L. Zippin, Topological transformation groups, Robert E. Krieger Publishing Co., Huntington, N.Y., 1974, Reprint of the 1955 original.
  • L. Nachbin, The Haar Integral, van Nostrand, Princeton, New Jersey, 1965.
  • J. Nagata, Modern dimension theory, revised ed., Sigma Series in Pure Mathematics, vol. 2, Heldermann Verlag, Berlin, 1983.
  • —, Modern general topology, second ed., North Holland Mathematical Library, vol. 33, North Holland, 1985.
  • A. Néron, Modèles minimaux des variétes abèliennes sur les corps locaux et globaux, Math. Publ. of IHES 21 (1964), 5–128.
  • B. B. Newman, Some results on one-relator groups, Bull. Amer. Math. Soc. 74 (1968), 568–571.
  • G. Niblo, A geometric proof of Stallings’ theorem on groups with more than one end, Geometriae Dedicata 105 (2004), no. 1, 61–76.
  • B. Nica, Cubulating spaces with walls, Alg. & Geom. Topology 4 (2004), 297–309.
  • —, Group actions on median spaces, preprint, arXiv:0809.4099, 2008.
  • —, Proper isometric actions of hyperbolic groups on $L^p$-spaces, Compos. Math. 149 (2013), no. 5, 773–792.
  • J. Nieminen, The ideal structure of simple ternary algebras, Colloq. Math. 40 (1978), 23–29.
  • G. Noskov, Bounded cohomology of discrete groups with coefficients, Leningrad Math. Journal 2 (1991), no. 5, 1067–1084.
  • P. S. Novikov, On the algorithmic insolvability of the word problem in group theory, American Mathematical Society Translations, Ser 2, Vol. 9, American Mathematical Society, Providence, R. I., 1958, pp. 1–122.
  • W. Neumann and L. Reeves, Central extensions of word hyperbolic groups, Ann. of Math. 145 (1997), 183–192.
  • G. A. Niblo and L. D. Reeves, Groups acting on CAT(0) cube complexes, Geometry and Topology 1 (1997), 7 pp.
  • B. Nica and J. Špakula, Strong hyperbolicity, Groups Geom. Dyn. 10 (2016), no. 3, 951–964.
  • P. Nowak and G. Yu, Large scale geometry, European Mathematical Society, 2011.
  • A. Yu. Ol′shanskiĭ, On the question of the existence of an invariant mean on a group, Uspekhi Mat. Nauk 35 (1980), no. 4, 199–200.
  • —, Geometry of defining relations in groups, Mathematics and its Applications (Soviet Series), vol. 70, Kluwer Academic Publishers Group, Dordrecht, 1991.
  • —, Hyperbolicity of groups with subquadratic isoperimetric inequalities, Intl. J. Alg. Comp. 1 (1991), 282–290.
  • —, Periodic quotient groups of hyperbolic groups, Mat. Sb. 182 (1991), no. 4, 543–567.
  • —, Almost every group is hyperbolic, Internat. J. Algebra Comput. 2 (1992), no. 1, 1–17.
  • —, $\textrm {SQ}$-universality of hyperbolic groups, Mat. Sb. 186 (1995), no. 8, 119–132.
  • Y. Ollivier, Sharp phase transition theorems for hyperbolicity of random groups, Geom. Funct. Anal. 14 (2004), no. 3, 595–679.
  • —, A January 2005 invitation to random groups, Ensaios Matemáticos [Mathematical Surveys], vol. 10, Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
  • —, Some small cancellation properties of random groups, Internat. J. Algebra Comput. 17 (2007), no. 1, 37–51.
  • A. Yu. Ol′shanskiĭ, D. V. Osin, and M. V. Sapir, Lacunary hyperbolic groups, Geom. Topol. 13 (2009), no. 4, 2051–2140, With an appendix by M. Kapovich and B. Kleiner.
  • O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307–314.
  • A. Yu. Ol′shanskiĭ and M. V. Sapir, Length and area functions on groups and quasi-isometric Higman embeddings, International Journal of Algebra and Computation 11 (2001), 137–170.
  • —, Non-amenable finitely presented torsion-by-cyclic groups, Publ. Math. IHES 96 (2002), 43–169.
  • D. Osajda, A construction of hyperbolic Coxeter groups, Comment. Math. Helv. 88 (2013), no. 2, 353–367.
  • —, Small cancellation labellings of some infinite graphs and applications, preprint arXiv:1406.5015, 2014.
  • D. Osin, Subgroup distortions in nilpotent groups, Comm. Algebra 29 (2001), no. 12, 5439–5463.
  • —, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100pp.
  • —, Small cancellations over relatively hyperbolic groups and embedding theorems, Ann. of Math. 172 (2010), 1–39.
  • A. Onishchik and E. Vinberg, Lie groups and algebraic groups, Springer, 1990.
  • D. Ornstein and B. Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161–164.
  • Y. Ollivier and D. Wise, Cubulating random groups at density less than $1/6$, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4701–4733.
  • N. Ozawa, A functional analysis proof of Gromov’s polynomial growth theorem, preprint, 2015.
  • P. Pansu, Croissance des boules et des géodésiques fermées dan les nilvariétés, Ergodic Th. & Dyn. Sys. 3 (1983), 415–455.
  • —, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60.
  • —, Cohomologie $L^p$: invariance sous quasi-isométrie, preprint, http://www.math.u-psud.fr/~pansu/liste-prepub.html, 1995.
  • —, Formule de Matsushima, de Garland, et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles, preprint, Orsay, 1996.
  • —, Cohomologie $L^p$ en degré 1 des espaces homogènes, Potential Anal. 27 (2007), no. 2, 151–165.
  • P. Papasoglu, Homogeneous trees are bi-Lipschitz equivalent, Geom. Dedicata 54 (1995), no. 3, 301–306.
  • —, On the subquadratic isoperimetric inequality, Geometric group theory, vol. 25, de Gruyter, Berlin-New-York, 1995, R. Charney, M. Davis, M. Shapiro (eds), pp. 193–200.
  • —, Strongly geodesically automatic groups are hyperbolic, Invent. Math. 121 (1995), no. 2, 323–334.
  • —, An algorithm detecting hyperbolicity, Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994), vol. 25, Amer. Math. Soc., Providence, RI, 1996, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pp. 193–200.
  • —, Quasi-flats in semihyperbolic groups, Proc. Amer. Math. Soc. 126 (1998), 1267–1273.
  • —, Isodiametric and isoperimetric inequalities for complexes and groups, J. London Math. Soc. (2) 62 (2000), no. 1, 97–106.
  • —, Notes on hyperbolic and automatic groups, Lecture Notes, based on the notes of M. Batty, 2003.
  • —, Quasi-isometry invariance of group splittings, Ann. of Math. 161 (2005), no. 2, 759–830.
  • J. Parker, Hyperbolic spaces, vol. 2, Jyväskylä Lectures in Mathematics, 2008.
  • F. Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988), 53–80.
  • —, Outer automorphisms of hyperbolic groups and small actions on $\textbf {R}$-trees, Arboreal group theory (Berkeley, CA, 1988), Math. Sci. Res. Inst. Publ., vol. 19, Springer, New York, 1991, pp. 331–343.
  • —, Outer automorphisms of hyperbolic groups and small actions on $\R$–trees, Arboreal group theory (R. Alperin, ed.), Publ. M.S.R.I., vol. 19, Springer, 1991, pp. 331–343.
  • —, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2) 54 (1996), no. 1, 50–74.
  • J. Pawlikowski, The Hahn-Banach theorem implies the Banach-Tarski paradox, Fundamenta Mathematicae 138 (1991), no. 1, 21–22.
  • E. K. Pedersen, Bounded and continuous control, Proceedings of the conference “Novikov conjectures, index theorems and rigidity” volume II, Oberwolfach 1993, LMS Lecture Notes Series, vol. 227, Cambridge University Press, 1995, pp. 277–284.
  • I. Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups I, Geom. Topol. 15 (2011), no. 4, 1883–1925.
  • —, Coarse differentiation and quasi-isometries of a class of solvable Lie groups II, Geom. Topol. 15 (2011), no. 4, 1927–1981.
  • P. Petersen, Riemannian geometry, third ed., Graduate Texts in Mathematics, vol. 171, Springer, Cham, 2016.
  • D. Pincus, Independence of the prime ideal theorem from the Hahn Banach theorem, Bull. Amer. Math. Soc. 78 (1972), 766–770.
  • —, The strength of the Hahn-Banach theorem, Victoria Symposium on Nonstandard Analysis (Univ. Victoria, Victoria, B.C., 1972), Springer, Berlin, 1974, pp. 203–248. Lecture Notes in Math., Vol. 369.
  • C. Pittet, On the isoperimetry of graphs with many ends, Colloq. Math. 78 (1998), 307–318.
  • V. P. Platonov, A certain problem for finitely generated groups, Dokl. Akad. Nauk BSSR 12 (1968), 492–494.
  • F. Point, Groups of polynomial growth and their associated metric spaces, J. Algebra 175 (1995), no. 1, 105–121.
  • B. Pospíšil, Remark on bicompact spaces, Ann. of Math. (2) 38 (1937), no. 4, 845–846.
  • G. Prasad, Strong rigidity of Q–rank one lattices, Invent. Math. 21 (1973), 255–286.
  • P. Papasoglu and K. Whyte, Quasi-isometries between groups with infinitely many ends, Comment. Math. Helv. 77 (2002), no. 1, 133–144.
  • M. O. Rabin, Recursive unsolvability of group theoretic problems, Ann. of Math. (2) 67 (1958), 172–194.
  • M. Raghunathan, Discrete subgroups of Lie groups, Springer, 1972.
  • —, Torsion in cocompact lattices in coverings of Spin$(2,n)$, Math. Ann. 266 (1984), no. 4, 403–419.
  • J.G. Ratcliffe, Foundations of hyperbolic manifolds, Springer, Second Edition, 2006.
  • H. Reiter, On some properties of locally compact groups, Nederl. Akad. Wetensch. Proc. Ser. A 68=Indag. Math. 27 (1965), 697–701.
  • Yu. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs, vol. 73, American Mathematical Society, Providence, RI, 1989, Translated from the Russian by H. H. McFaden.
  • T. R. Riley, Higher connectedness of asymptotic cones, Topology 42 (2003), no. 6, 1289–1352.
  • W. Rinow, Die innere Geometrie der metrischen Räume, Die Grundlehren der mathematischen Wissenschaften, Bd. 105, Springer-Verlag, Berlin, 1961.
  • E. Rips, Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982), no. 1, 45–47.
  • R.M. Robinson, On the decomposition of spheres, Fund. Math. 34 (1947), 246–260.
  • D. Robinson, Finiteness conditions and generalized soluble groups, I, Springer Verlag, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 62.
  • G. Robertson, Crofton formulae and geodesic distance in hyperbolic spaces, J. Lie Theory 8 (1998), 163–172.
  • J. Roe, Lectures on coarse geometry, University Lecture Series, vol. 31, American Mathematical Society, Providence, RI, 2003.
  • M. Roller, Poc sets, median algebras and group actions, preprint, arXiv:1607.0774, 2016.
  • J. Rosenblatt, Invariant measures and growth conditions, Trans. Amer. Math. Soc. 193 (1974), 33–53.
  • H. Royden, Real analysis, Macmillan, New York, 1968.
  • H. Rubin and J. E. Rubin, Equivalents of the axiom of choice. II, Studies in Logic and the Foundations of Mathematics, vol. 116, North-Holland Publishing Co., Amsterdam, 1985.
  • E. Rips and Z. Sela, Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal. 4 (1994), no. 3, 337–371.
  • —, Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math. 146 (1997), 53–109.
  • W. Rudin, Real and complex analysis, McGraw-Hill International editions, 1987.
  • A.W. Sale, Short conjugators and compression exponents in free solvable groups, preprint, arXiv:1202.5343v1, 2012.
  • —, Metric behaviour of the Magnus embedding, Geometriae Dedicata 176 (2015), 303–315.
  • M. V. Sapir, Some group theory problems, Internat. J. Algebra Comput. 17 (2007), no. 5-6, 1189–1214.
  • M. Sapir, Combinatorial algebra: Syntax and semantics, Springer Verlag, 2014.
  • —, On groups with locally compact asymptotic cones, International Journal of Algebra and Computation 25 (2015), 37–40.
  • R. Sauer, Homological invariants and quasi-isometry, Geom. Funct. Anal. 16 (2006), no. 2, 476–515.
  • M. Sapir, J.-C. Birget, and E. Rips, Isoperimetric and isodiametric functions of groups, Ann. of Math. (2) 156 (2002), no. 2, 345–466.
  • I.J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), 522–536.
  • R. Scharlau, A characterization of Tits buildings by metrical properties, J. London Math. Soc. 32 (1985), no. 2, 317–327.
  • R. Schwartz, Quasi-isometric rigidity and Diophantine approximation, Acta Math. 177 (1996), no. 1, 75–112.
  • —, The quasi-isometry classification of rank one lattices, Publ. Math. IHES 82 (1996), 133–168.
  • —, Symmetric patterns of geodesics and automorphisms of surface groups, Invent. Math. 128 (1997), no. 1, 177–199.
  • V. Schur, A quantitative version of the Morse lemma and quasi-isometries fixing the ideal boundary, Journal of Functional Analysis 264 (2013), 815–836.
  • P. Scott, Compact submanifolds of 3-manifolds, J. London Math. Sco. 7 (1973), 246–250.
  • —, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555–565.
  • —, The geometry of $3$-manifolds, Bull. of the LMS 15 (1983), 401–487.
  • A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to Function Theory (K. Chandrasekhadran, ed.), Tata Inst. of Fund. Research, Bombay, 1960, pp. 147–164.
  • Z. Sela, Uniform embeddings of hyperbolic groups in Hilbert spaces, Israel J. Math. 80 (1992), no. 1-2, 171–181.
  • —, The isomorphism problem for hyperbolic groups. I, Ann. of Math. (2) 141 (1995), no. 2, 217–283.
  • —, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank $1$ Lie groups. II, Geom. Funct. Anal. 7 (1997), no. 3, 561–593.
  • —, Structure and rigidity in hyperbolic groups and discrete groups in rank 1 Lie groups, II, Geom. Funct. Anal. 7 (1997), 561–593.
  • —, Endomorphisms of hyperbolic groups. I. The Hopf property, Topology 38 (1999), no. 2, 301–321.
  • —, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. IHES 93 (2001), 31–105.
  • Z. Sela, Diophantine geometry over groups. II. Completions, closures and formal solutions, Israel J. Math. 134 (2003), 173–254.
  • —, Diophantine geometry over groups. IV. An iterative procedure for validation of a sentence, Israel J. Math. 143 (2004), 1–130.
  • —, Diophantine geometry over groups. III. Rigid and solid solutions, Israel J. Math. 147 (2005), 1–73.
  • —, Diophantine geometry over groups. $\rm V_1$. Quantifier elimination. I, Israel J. Math. 150 (2005), 1–197.
  • —, Diophantine geometry over groups. $\textrm {V}_2$. Quantifier elimination. II, Geom. Funct. Anal. 16 (2006), no. 3, 537–706.
  • —, Diophantine geometry over groups. VI. The elementary theory of a free group, Geom. Funct. Anal. 16 (2006), no. 3, 707–730.
  • —, Diophantine geometry over groups. VII. The elementary theory of a hyperbolic group, Proc. Lond. Math. Soc. (3) 99 (2009), no. 1, 217–273.
  • —, Diophantine geometry over groups VIII: Stability, Ann. of Math. (2) 177 (2013), no. 3, 787–868.
  • J. P. Serre, Trees, Springer, New York, 1980.
  • Y. Shalom, The Growth of linear groups, Journal of Algebra 199 (1998), 169–174.
  • Y. Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math. 141 (2000), no. 1, 1–54.
  • —, Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math. 192 (2004), no. 2, 119–185.
  • —, The algebraization of Kazhdan’s property (T), International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1283–1310.
  • S. Shelah, Classification theory and the number of non-isomorphic models, Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., 1978.
  • M. Sholander, Medians and betweenness, Proc. Amer. Math. Soc. 5 (1954), 801–807.
  • —, Medians, lattices and trees, Proc. Amer. Math. Soc. 5 (1954), 808–812.
  • L. Silbermann, Equivalence between properties (T) and (FH), unpublished notes.
  • V. L. Širvanjan, Imbedding of the group $B(\infty ,$ $n)$ in the group $B(2,$ $n)$, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 1, 190–208, 223.
  • Y. T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2) 112 (1980), 73–111.
  • Y. Solomon, Substitution tilings and separated nets with similarities to the integer lattice, Israel J. Math. 181 (2011), 445–460.
  • E. Stein and R. Shakarchi, Real analysis, measure theory, integration, and Hilbert spaces, Princeton Lectures in Analysis, III, Princeton University Press, 2005.
  • Y. Shalom and T. Tao, A finitary version of Gromov’s polynomial growth theorem, Geom. Funct. Anal. 20 (2010), no. 6, 1502–1547.
  • J. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. 88 (1968), 312–334.
  • —, Topology of finite graphs, Inv. Math. 71 (1983), 551–565.
  • —, Commutative rings and groups, UC Berkeley Lecture Notes, 2000.
  • R. A. Struble, Metrics in locally compact groups, Compositio Math. 28 (1974), 217–222.
  • G. Strang, Linear algebra and its applications, Thomson, Brooks/Cole, 2006.
  • D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics, Proceedings of the 1978 Stony Brook Conference, Ann. Math. Studies, vol. 97, Princeton University Press, 1981, pp. 465–496.
  • H. Sultan, Hyperbolic quasi-geodesics in CAT(0) spaces, Geom. Dedicata 169 (2014), 209–224.
  • A. S. Švarc, A volume invariant of coverings, Dokl. Akad. Nauk SSSR (N.S.) 105 (1955), 32–34.
  • P. Scott and T. Wall, Topological methods in group theory, “Homological Group Theory”, London Math. Soc. Lecture Notes, vol. 36, 1979, pp. 137– 204.
  • M. Sageev and D. Wise, The Tits alternative for $\textrm {CAT}(0)$ cubical complexes, Bull. London Math. Soc. 37 (2005), no. 5, 706–710.
  • G. A. Swarup, A note on accessibility, Geometric group theory, Vol. 1 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 181, Cambridge Univ. Press, Cambridge, 1993, pp. 204–207.
  • J. Świa̧tkowski, A class of automorphism groups of polygonal complexes, Q. J. Math. 52 (2001), no. 2, 231–247.
  • —, Some infinite groups generated by involutions have Kazhdan’s property (T), Forum Math. 13 (2001), no. 6, 741–755.
  • N. Shanmugalingam and X. Xie, A rigidity property of some negatively curved solvable Lie groups, Commentarii Mathematici Helvetici 87 (2012), 805–823.
  • R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994.
  • T. Tao, Product set estimates for non-commutative groups, Combinatorica 28 (2008), no. 5, 547–594.
  • A. Tarski, Algebraische fassung des massproblems, Fund. Math. 31 (1938), 47–66.
  • —, Collected papers. Vol. 1, Contemporary Mathematicians, Birkhäuser Verlag, Basel, 1986, 1921–1934, Edited by Steven R. Givant and Ralph N. McKenzie.
  • B. Thornton, Asymptotic cones of symmetric spaces, Ph.D. Thesis, University of Utah, http://www.math.utah.edu/theses/2002/thornton/blake-thornton-dissertation.pdf, 2002.
  • W. Thurston, Three-dimensional geometry and topology, I, Princeton Mathematical Series, vol. 35, Princeton University Press, 1997.
  • J. Tits, Free subgroups in linear groups, Journal of Algebra 20 (1972), 250–270.
  • P. Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 149–160.
  • —, Differentiability and rigidity of Moebius groups, Inventiones Mathematicae 82 (1985), 555–578.
  • —, On quasiconformal groups, J. Analyse Math. 46 (1986), 318–346.
  • —, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1–54.
  • —, Convergence groups and Gromov’s metric hyperbolic spaces, New Zealand J. Math. 23 (1994), no. 2, 157–187.
  • C. Thomassen and W. Woess, Vertex-transitive graphs and accessibility, J. Combin. Theory Ser. B 58 (1993), no. 2, 248–268.
  • K.A. Umlauf, über Die Zusammensetzung Der Endlichen Continuierlichen Transformationsgruppen, Insbesondre Der Gruppen Vom Range Null, Nabu Press, 2010, 1891, Inaugural-Dissertation, Universität Leipzig.
  • J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., vol. 229, Springer, 1971.
  • —, Gromov hyperbolic spaces, Expo. Math. 23 (2005), no. 3, 187–231.
  • —, Quasi-Möbius maps, J. Analyse Math. 44 (1984/85), 218–234.
  • N. Varopoulos, Distance distortion on Lie groups, Random walks and discrete potential theory (Cortona, 1997), Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999, pp. 320–357.
  • S. Vassileva, The Magnus embedding is a quasi-isometry, Internat. J. Algebra Comput. 22 (2012), no. 8, 1240005.
  • M. L. J. van de Vel, Theory of convex structures, North-Holland Mathematical Library, vol. 50, North-Holland Publishing Co., Amsterdam, 1993.
  • A. Vershik, Amenability and approximation of infinite groups, Selecta Math. Soviet. 2 (1982), no. 4, 311–330.
  • E. R. Verheul, Multimedians in metric and normed spaces, CWI Tract, vol. 91, Stichting Mathematisch Centrum voor Wiskunde en Informatica, Amsterdam, 1993.
  • L. Vietoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Mathematische Annalen 97 (1927), 454–472.
  • G. Vitali, Sul problema della misura dei gruppi di punti di una retta, Gamberini e Parmeggiani, 1905, Bologna.
  • J. von Neumann, Über die Definition durch transfinite Induktion und verwandte Fragen der allgemeinen Mengenlehre, Math. Ann. 99 (1928), 373–391.
  • —, Zur allgemeinen theorie des masses, Fund. math. 13 (1929), 73–116.
  • N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992.
  • M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math, vol. 1319, Springer, 1988.
  • S. Wagon, The Banach-Tarski paradox, Cambridge Univ. Press, 1985.
  • F. W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, 94, Springer-Verlag, 1983.
  • E. Warner, Ultraproducts and foundations of higher order Fourier analysis, Thesis, Princeton University, 2012.
  • Y. Watatani, Property (T) of Kazhdan implies property (FA) of Serre, Math. Japonica 27 (1982), 97–103.
  • B.A.F. Wehrfritz, Infinite linear groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 76, Springer, 1973.
  • B. Weisfeiler, On the size and structure of finite linear groups, arXiv:1203.1960, 1984.
  • S. Wenger, Isoperimetric inequalities of Euclidean type in metric spaces, Geom. Funct. Anal. 15 (2005), 534–554.
  • —, Gromov hyperbolic spaces and the sharp isoperimetric constant, Invent. Math. 171 (2008), no. 1, 227–255.
  • —, Nilpotent groups without exactly polynomial Dehn function, J. Topol. 4 (2011), no. 1, 141–160.
  • K. Whyte, Amenability, bilipschitz equivalence, and the von Neumann conjecture, Duke Math. J. 99 (1999), 93–112.
  • —, The large scale geometry of the higher Baumslag-Solitar groups, Geom. Funct. Anal. 11 (2001), no. 6, 1327–1343.
  • D. T. Wise, Cubulating small cancellation groups, Geom. Funct. Anal. 14 (2004), no. 1, 150–214.
  • W. Woess, Random walks on infinite graphs and groups, Cambridge University Press, 2000.
  • J. Wolf, Growth of finitely generated solvable groups and curvature of riemannian manifolds, J. Diff. Geom. 2 (1968), 421–446.
  • K. Wortman, Quasi-isometric rigidity of higher rank S-arithmetic lattices, Geometry & Topology 11 (2007), 995–1048.
  • J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Springer-Verlag, New York-Heidelberg, 1975.
  • J. Wysoczánski, On uniformly amenable groups, Proc. Amer. Math. Soc. 102 (1988), no. 4, 933–938.
  • X. Xie, Quasi-isometric rigidity of Fuchsian buildings, Topology 45 (2006), 101–169.
  • —, Quasisymmetric maps on the ideal boundary of a negatively curved solvable Lie group, Mathematische Annalen 353 (2012), 727–746.
  • —, Quasisymmetric maps on reducible Carnot groups, Pacific Journal of Mathematics 265 (2013), 113–122.
  • —, Large scale geometry of negatively curved $\R ^n$, Geometry & Topology 18 (2014), 831–872.
  • —, Some examples of quasiisometries of nilpotent Lie groups, J. Reine Angew. Math. (Crelle’s Journal) 718 (2016), 25–38.
  • H. Yamabe, A generalization of a theorem of Gleason, Ann. of Math. (2) 58 (1953), 351–365.
  • A. Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. (Crelle’s Journal) 566 (2004), 41–89.
  • G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), no. 1, 201–240.
  • —, Hyperbolic groups admit proper isometric actions on $\ell ^p$-spaces, Geom. Funct. Anal. 15 (2005), no. 5, 1144–1151.
  • H. Zassenhaus, Beweis eines satzes über diskrete gruppen, Abh. Math. Sem. Hansisch. Univ. 12 (1938), 289–312.
  • E. Zermelo, Beweis, dass jede Menge wohlgeordnet werden kann, Math. Ann. 59 (1904), 514–516.
  • R. Zimmer, Ergodic theory and semisimple groups, Monographs in Math, vol. 81, Birkhauser, 1984.
  • A. Żuk, La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 5, 453–458.
  • —, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Analysis 13 (2003), 643–670.