Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Estimates for functionals with a known finite set of moments in terms of high order moduli of continuity in spaces of functions defined on a segment
HTML articles powered by AMS MathViewer

by O. L. Vinogradov and V. V. Zhuk
Translated by: O. L. Vinogradov
St. Petersburg Math. J. 25 (2014), 421-446
DOI: https://doi.org/10.1090/S1061-0022-2014-01297-6
Published electronically: May 16, 2014

Abstract:

A new technique is developed for estimating functionals in terms of the quantities mentioned in the title. The constants in estimates are indicated explicitly. As examples, Jackson type inequalities for approximations by polynomials and splines can be mentioned, along with estimates of error terms for interpolation formulas and for formulas of numerical differentiation and integration. One of results can be stated as follows. Let $E$ be a segment, $|E|$ its length, $E_{n-1}$ the best uniform approximation by polynomials of degree at most $n-1$, and $\omega _{2m}$ the uniform modulus of continuity of order $2m$. Let ${\mathcal K}_r=\frac {4}{\pi }\sum _{\nu =0}^{\infty } \frac {(-1)^{\nu (r+1)}}{(2\nu +1)^{r+1}}$ be the Favard constants, ${\mathcal W}_{2m}$ the Whitney constants, and $\nu _m=\frac {8}{\binom {2m}{m}}\sum _{l=0}^{\lfloor (m-1)/2\rfloor }\frac {\binom {2m}{m-2l-1}}{(2l+1)^2}$. Let $m\geq 2$, $n\geq 2m$, $\gamma >0$, $f\in C(E)$. Then \begin{multline*} E_{n-1}(f)\leq \bigg (\frac {1}{\binom {2m}{m}}\bigg ( 1+\frac {\nu _m}{\gamma ^{2}}\frac {{\mathcal K}_2}{4}+\sum _{k=2}^{m-1} \frac {{\mathcal K}_{2k}}{2^{2k}}\frac {(2m-2k)! (2m)^{2k}}{(2m)!} \frac {\nu _m^k}{\gamma ^{2k}}\bigg ) \\ +\frac {{\mathcal K}_{2m}}{2^{2m}}\frac {(2m)^{2m}}{(2m)!} \frac {\nu _m^m}{4^m\gamma ^{2m}}\bigg ) (2^{2m}-1){\mathcal W}_{2m}\omega _{2m}\Big (f,\frac {\gamma |E|}{n}\Big ). \end{multline*}
References
  • O. L. Vinogradov and V. V. Zhuk, Estimates for functionals with a known sequence of moments in terms of the deviation of Steklov-type means, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 383 (2010), no. Analiticheskaya Teoriya Chisel i Teoriya Funktsiĭ. 25, 5–32, 204 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 178 (2011), no. 2, 115–131. MR 2749339, DOI 10.1007/s10958-011-0531-3
  • O. L. Vinogradov and V. V. Zhuk, The rate of decrease of constants in Jackson-type inequalities depending on the order of the modulus of continuity, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 383 (2010), no. Analiticheskaya Teoriya Chisel i Teoriya Funktsiĭ. 25, 33–52, 204–205 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 178 (2011), no. 2, 132–143. MR 2749340, DOI 10.1007/s10958-011-0532-2
  • O. L. Vinogradov and V. V. Zhuk, Estimates for functionals with a known finite set of moments in terms of the deviations of operators constructed on the basis of Steklov averages and finite differences, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 392 (2011), no. Analiticheskaya Teoriya Chisel i Teoriya Funktsiĭ. 26, 32–66, 218 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 184 (2012), no. 6, 679–698. MR 2870218, DOI 10.1007/s10958-012-0890-4
  • V. V. Žuk and G. I. Natanson, On the question of approximation in an integral metric of functions specified on an interval, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 3 (1979), 16–26, 121 (Russian, with English summary). MR 555973
  • Bl. Sendov, A modified Steklov function, C. R. Acad. Bulgare Sci. 36 (1983), no. 3, 315–317 (Russian). MR 709014
  • V. V. Zhuk and G. I. Natanson, Guidelines on the course “Approximation of functions”. Part. 4, Izd. St.-Petersburg. Univ., St.Petersburg, 1991. (Russian)
  • V. V. Zhuk and V. F. Kuzyutin, Approksimatsiya funktsiĭ i chislennoe integrirovanie, Izdatel′stvo Sankt-Peterburgskogo Universiteta, St. Petersburg, 1995 (Russian, with Russian summary). MR 1664064
  • B. Sendov and V. Popov, Usrednennye moduli gladkosti, “Mir”, Moscow, 1988 (Russian). Translated from the Bulgarian and with a preface by Yu. A. Kuznetsov and K. I. Oskolkov. MR 954190
  • N. P. Korneĭchuk, Splaĭ ny v teorii priblizheniya, “Nauka”, Moscow, 1984 (Russian). MR 758443
  • S. Foucart, Y. Kryakin, and A. Shadrin, On the exact constant in the Jackson-Stechkin inequality for the uniform metric, Constr. Approx. 29 (2009), no. 2, 157–179. MR 2481587, DOI 10.1007/s00365-008-9039-6
  • Yu. V. Kryakin, Whitney’s theorem for oscillating on $\mathbb R$ functions, 2006, arXiv:math/0612442v1.
  • Hassler Whitney, On functions with bounded $n$th differences, J. Math. Pures Appl. (9) 36 (1957), 67–95. MR 84611
  • O. D. Zhelnov, Whitney constants are bounded by 1 for $k=5,6,7$, East J. Approx. 8 (2002), no. 1, 1–14. Dedicated to the 70th anniversary of Professor Blagovest Sendov. MR 1916324
  • —, Whinney’s inequalites and their generalizations, PhD thesis, Kiev, 2004. (Russian)
  • J. Gilewicz, Yu. V. Kryakin, and I. A. Shevchuk, Boundedness by 3 of the Whitney interpolation constant, J. Approx. Theory 119 (2002), no. 2, 271–290. MR 1939285, DOI 10.1006/jath.2002.3732
  • Yu. V. Kryakin and L. G. Kovalenko, Whitney constants in the classes $L^p,$ $1\leq p<\infty$, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1992), 69–77 (Russian). MR 1205041
  • V. V. Zhuk, Guidelines the course “Approximation of functions”, Part 1, Izd. Leningrad. Univ., Leningrad, 1988. (Russian)
  • V. V. Zhuk, Functions of the $\textrm {Lip}\,1$ class and S. N. Bernstein’s polynomials, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 1 (1989), 25–30, 122–123 (Russian, with English summary); English transl., Vestnik Leningrad Univ. Math. 22 (1989), no. 1, 38–44. MR 1021474
  • O. L. Vinogradov, Some exact inequalities for the second modulus of continuity of periodic functions and functions extended from a segment, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 232 (1996), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 24, 33–49, 213–214 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 92 (1998), no. 1, 3560–3572. MR 1464422, DOI 10.1007/BF02440140
  • V. V. Zhuk and G. I. Natanson, On the approximation of functions defined on a segment, Metody Vychisl. 17 (1995), 105–121, 208–209 (Russian, with Russian summary). MR 1791827
  • V. V. Zhuk, Guidelines for the course “Approximation theory of functions and its applications”. Part 1, Izd. St.-Petersburg Univ., St.Petersburg, 1992. (Russian)
  • O. L. Vinogradov and V. V. Zhuk, Estimates for functionals with a known finite set of moments in terms of moduli of continuity and the behavior of constants in Jackson-type inequalities, Algebra i Analiz 24 (2012), no. 5, 1–43 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 24 (2013), no. 5, 691–721. MR 3087819, DOI 10.1090/S1061-0022-2013-01261-1
  • Herbert F. Sinwel, Uniform approximation of differentiable functions by algebraic polynomials, J. Approx. Theory 32 (1981), no. 1, 1–8. MR 629577, DOI 10.1016/0021-9045(81)90017-4
  • I. K. Daugavet, Introduction to the classial theory of approximation of functions, Izd. St.-Petersburg. Univ., St.Petersburg, 2011. (Russian)
  • I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsiĭ, Izdat. Leningrad. Univ., Leningrad, 1977 (Russian). MR 0470560
  • A. H. Tureckiĭ, Teoriya interpolirovaniya v zadachakh, Izdat. “Vyšèĭšaja Škola”, Minsk, 1968 (Russian). MR 0261224
  • A. Chakrabarti and Hamsapriye, Derivation of the errors involved in interpolation and their application to numerical quadrature formulae, J. Comput. Appl. Math. 92 (1998), no. 1, 59–68. MR 1629271, DOI 10.1016/S0377-0427(98)00045-4
  • A. Kh. Turetskiĭ, Teoriya interpolirovaniya v zadachakh. Chast′2, Izdat. “Vyšèĭšaja Škola”, Minsk, 1977 (Russian). With a foreword by F. D. Gahov. MR 0463750
  • Aleksei Shadrin, Error bounds for Lagrange interpolation, J. Approx. Theory 80 (1995), no. 1, 25–49. MR 1308593, DOI 10.1006/jath.1995.1003
  • Gary W. Howell, Derivative error bounds for Lagrange interpolation: an extension of Cauchy’s bound for the error of Lagrange interpolation, J. Approx. Theory 67 (1991), no. 2, 164–173. MR 1133057, DOI 10.1016/0021-9045(91)90015-3
  • Michael S. Floater, Error formulas for divided difference expansions and numerical differentiation, J. Approx. Theory 122 (2003), no. 1, 1–9. MR 1976120, DOI 10.1016/S0021-9045(03)00025-X
  • V. V. Zhuk and G. I. Natanson, Some remarks on periodic equidistant splines, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 2 (1985), 12–17, 122 (Russian, with English summary). MR 801697
  • J. F. Steffensen, Interpolation, Chelsea Publishing Co., New York, N. Y., 1950. 2d ed. MR 0036799
  • M. L. Brodskiĭ, Estimation of the remainder term in formulas of numerical differentiation, Uspehi Mat. Nauk 13 (1958), no. 6 (84), 73–77 (Russian). MR 0135725
  • L. V. Kantorovič and V. I. Krylov, Priblizhennye metody vysshego analiza, Fifth corrected edition, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow-Leningrad, 1962 (Russian). MR 0154389
  • S. M. Nikol′skiĭ, Kvadraturnye formuly, 4th ed., “Nauka”, Moscow, 1988 (Russian). With an appendix by N. P. Korneĭchuk; With a preface by Nikol′skiĭ and Korneĭchuk. MR 949691
  • G. I. Natanson, A remark on the Newton-Cotes formula, Metody Vychisl. 14 (1985), 58–59, 187 (Russian). MR 1000509
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 41A15, 41A17, 41A35
  • Retrieve articles in all journals with MSC (2010): 41A15, 41A17, 41A35
Bibliographic Information
  • O. L. Vinogradov
  • Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskii pr. 28, Staryi Peterhof, St. Petersburg 198504, Russia
  • Email: olvin@math.spbu.ru
  • V. V. Zhuk
  • Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskii pr., 28, Staryi Peterhof, St. Petersburg 198504, Russia
  • Email: zhuk@math.spbu.ru
  • Received by editor(s): January 10, 2013
  • Published electronically: May 16, 2014

  • Dedicated: Dedicated to Boris Mikhaĭlovich Makarov
  • © Copyright 2014 American Mathematical Society
  • Journal: St. Petersburg Math. J. 25 (2014), 421-446
  • MSC (2010): Primary 41A15, 41A17, 41A35
  • DOI: https://doi.org/10.1090/S1061-0022-2014-01297-6
  • MathSciNet review: 3184599