ACCEPTED MANUSCRIPT

Efficient activation of Co/SBA-15 catalyst by high-frequency AC-DBD plasma thermal effect for toluene removal

, , , , , , and

Accepted Manuscript online 6 May 2024 © 2024 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing

What is an Accepted Manuscript?

DOI 10.1088/2058-6272/ad47db

10.1088/2058-6272/ad47db

Abstract

Dielectric barrier discharge (DBD) plasma excited by high-frequency alternating-current (AC) power supply is widely employed for the degradation of volatile organic compounds (VOCs). However, the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency. In this work, an innovative DBD thermal-conducted catalysis (DBD-TCC) system, integrating high-frequency AC-DBD plasma and its generated thermal effect to activate the Co/SBA-15 catalyst, was employed for toluene removal. Specifically, Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 kV. At 12.4 kV, the temperature in the catalyst zone could reach 261 °C in the DBD-TCC system, resulting in an increase in toluene degradation efficiency of 17%, CO2 selectivity of 21.2%, and energy efficiency of 27%, respectively, compared to the DBD system alone. In contrast, the DBD thermal-unconducted catalysis (DBD-TUC) system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation, highlighting the crucial role of AC-DBD generated heat in activating the catalyst. Furthermore, the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized. This work is expected to provide an energy-efficiency approach for high-frequency AC-DBD plasma removal of VOCs.

Export citation and abstract BibTeX RIS

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.