Paper The following article is Open access

The influence of microchemistry on the recrystallization texture of cold-rolled Al-Mn-Fe-Si alloys

, and

Published under licence by IOP Publishing Ltd
, , Citation K Huang et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 82 012035 DOI 10.1088/1757-899X/82/1/012035

1757-899X/82/1/012035

Abstract

The recrystallization textures of a cold-rolled Al-Mn-Fe-Si model alloy with three different microchemistry states after non-isothermal annealing were studied. The microstructure and texture evolution have been characterized by EBSD. It is clearly demonstrated that the actual microchemistry state as determined by the homogenization procedure strongly influence the recrystallized grain size and recrystallization texture after nonisothermal annealing. High Mn content in solid solution promotes stronger concurrent precipitation and retards recrystallization, which finally leads to a coarse grain structure, accompanied by strong P {011}<566> and/or M {113}<110> texture components and a ND- rotated cube {001}<310> component. A refined grain structure with Cube {001}<100> and/or a weak P component as the main texture components were obtained when the pre-existing dispersoids are coarser and fewer, and concurrent precipitation is limited. The different recrystallization textures are discussed with respect to the effect of second-phase particles using two different heating rates.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/82/1/012035