Paper The following article is Open access

Effect of intake manifold water injection on a natural gas spark ignition engine: an experimental study

, , , , and

Published under licence by IOP Publishing Ltd
, , Citation H Arruga et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 257 012029 DOI 10.1088/1757-899X/257/1/012029

1757-899X/257/1/012029

Abstract

Design and development of gas CHP (combined heat and power) engines are strongly influenced by the progressively more severe European NOx emissions normative. Water injection represents a promising approach to reduce these emissions while attaining high engine efficiency. In this work, the effect of intake manifold water injection on combustion parameters and performance of a single-cylinder naturally aspirated natural gas spark ignition engine is presented. First, the most appropriate injector was selected, using a spray test bed. Subsequently, engine experiments at constant indicated mean effective pressure (IMEP) and engine speed were conducted with water-fuel ratios of 0.1 to 0.3. IMEP was kept constant at about 6.3 bar by adjusting both air-fuel ratio and spark timing. A NOx reduction of 0.2 g/kWhi (15 %) for a constant ISFC of about 204 g/kWhi was achieved. In the low NOx regime, water injection allows for an improvement of the NOx-ISFC trade-off, while leading to poor fuel consumption at same NOx in the high efficiency regime. Furthermore, water injection implies a reduction of intake mixture temperature, lengthened burning delay and combustion duration and a moderate increase of combustion instability.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.