Paper The following article is Open access

Effect of Hybridized Fiber Wrapped Around the Aluminum Tubes on the Crushing Performances

, , , and

Published under licence by IOP Publishing Ltd
, , Citation A.E Ismail et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 160 012019 DOI 10.1088/1757-899X/160/1/012019

1757-899X/160/1/012019

Abstract

Nowadays, synthetic fibres for an example glass fibres is frequently used to wrap the metallic tubes in order to increase their load-bearing capacity. Due to environmental considerations and non-biodegradable behaviour, natural fibres or materials are increasingly used to replace synthetic fibres. The use of synthetic fibres can be minimized by combining them with natural fibres. Based on the literature survey, combining both fibres (synthetic and natural) for crushing applications are relatively new and therefore the main work of this paper is to present the crushing performances of hybridized fibres wrapped around the aluminium tubes when subjected to quasi-static crushing forces. Glass fibres are then combined with yarn kenaf fibres according to these volume fractions: 0, 25, 50, 75 and 100%. The hybridized fibres are wrapped around the tubes twice using different orientations [0o/0o], [15°/-15°], [30o/-30o] and [45o/-45o] included empty tubes before they are immersed into polyester resin bath. The composite tubes are then quasi-statically compressed using a constant cross-head displacement of 10mm/min. The force-displacement curves for each tube conditions are recorded automatically and analysed. The relation between hybridized fibbers and fibre orientations with crashworthiness parameters are investigated and discussed associating with their crushing mechanisms.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/160/1/012019