Paper The following article is Open access

A 3D Multiscale Model for Prediction of the Microstructure Evolution in Ti6Al4V Components Produced by Laser Powder Bed Fusion

Published under licence by IOP Publishing Ltd
, , Citation Laurentiu Nastac 2023 IOP Conf. Ser.: Mater. Sci. Eng. 1281 012002 DOI 10.1088/1757-899X/1281/1/012002

1757-899X/1281/1/012002

Abstract

A transient 3D multiscale model has been created to simulate the evolution of solidification microstructures rapidly and effectively in Ti6Al4V parts produced through Laser Powder Bed Fusion (LPBF). The microstructure simulation tool has been enhanced to account for rapid solidification conditions in Ti6Al4V alloys during processing of multi-layer multi-track LPBF parts. The simulation tool can evaluate the impact of part geometry, lase power input, laser speed, and laser beam shape on the formation of the microstructure in LPBF-processed Ti6Al4V alloy. The multiscale model considers several factors, including preferential crystallographic growth direction, isomorphism, epitaxy, melt pool motion, and temperature gradients to generate the observed texture and morphology of the microstructure in Ti6Al4V components. The model can evaluate various microstructure characteristics, such as grain size and texture. Consequently, it could aid in controlling the formation of solidification microstructures in Additive Manufacturing (AM) processed parts. The simulation tool has been previously validated by using IN625 laser remelting experiments made by National Institute of Standards and Technology. The 3D simulation tool can also be utilized to predict the microstructure formation in Ti6Al4V components produced by the Electron Beam AM processes.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/1281/1/012002