Paper The following article is Open access

Mineralization in the andesitic lava from Kildyam volcanic complex, central Yakutia, Russia

Published under licence by IOP Publishing Ltd
, , Citation Aleksey Kostin 2021 IOP Conf. Ser.: Earth Environ. Sci. 906 012006 DOI 10.1088/1755-1315/906/1/012006

1755-1315/906/1/012006

Abstract

This contribution presents the first detailed analysis of a new volcanic succession of olivine-pyroxenites, andesite, and dacite discovered in the Kildyam Late Jurassic complex in Central Yakutia. Petrographic and microprobe studies confirmed the liquid immiscibility in silicate melts during crystallization. Immiscible liquids are preserved as globules of one glass in another in andesites and as melted inclusions of native iron in matrix, clinopyroxene and plagioclase phenocrysts. Our analyses reveal the complex textural relationships between silicates and Fe-oxides, native iron and (Cu, Pb, Ag and Au)-rich phases, and provide unequivocal textural evidences, not observed previously. Purpose of this research is to preserve a very important data on IO (Iron Oxide) or IOCG (Iron Oxide Copper Gold) mineralization. Obtained results support occurrence and diverse of gold, silver, copper and lead minerals in magnetite lavas. During the early stage of fine-grained subvolcanic olivine-clinopyroxenite end pyrrhotite, globular igneous sulfides is a first proposed style of economic deposit formation. The second proposed style of economic mineralization in Kildyam is to be a magnetite-bearing lava; iron enrichment of the melilitic melt phase, followed by iron depletion and silica enrichment. The vesicle-hosted alloys and sulfides provide significant new data on metal transport and precipitation from high-temperature magmatic vapors. During syneruptive vapor phase exsolution, volatile metals (Cu-Zn, Fe-Al-Cu, Ni-Fe-Cu-Sn) and Ag-Cu-sulfides contribute to the formation of economic concentrations. Major conclusions contribute to 3-step genetic model. (1) Early-formed magmatic minerals led to partial dissolution of olivine-clinopyroxenite and their enrichment in Cu, Co and Ni relative to other metals, while troilite globules droplets grew.(2) First stage of division into two immiscible silicate and sulfide melt liquids (a) K-rich dacitic and rhyolithic glass, and (b) vesicles of heavy sulfide minerals with a large segregations and drops of native iron. (3) Lava of fused magnetite crystals and voids enriched in silver and gold, and (b) globular disseminated chalcopyrite in mineralized melilitic rocks.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1755-1315/906/1/012006