Paper The following article is Open access

Mechanical analysis of PDMS films based on different hyperelastic numerical constitutive models

, , and

Published under licence by IOP Publishing Ltd
, , Citation Qian Wang et al 2024 J. Phys.: Conf. Ser. 2740 012057 DOI 10.1088/1742-6596/2740/1/012057

1742-6596/2740/1/012057

Abstract

PDMS(polydimethylsiloxane) is widely employed as a substrate material in flexible electronic devices, necessitating its ability to undergo camber deformation while maintaining excellent ductility and flexibility. Understanding the mechanical behavior of PDMS is imperative for its practical applications. Consequently, to numerically investigate the tensile behavior of PDMS, two commonly used hyperelastic constitutive models, the Mooney-Rivlin model and the 3-term Ogden model, have been employed to describe its mechanical characteristics. The material coefficients were determined by fitting the uniaxial tensile experimental data. Subsequently, separate finite element models were developed for the PDMS membrane and the Cu-PDMS composite layer structure. The numerical findings demonstrate that both the Mooney-Rivlin model and the 3-term Ogden model adequately fit the experimental data. Nevertheless, in comparison to the 3-term Ogden model, the PDMS stress distribution exhibits higher values at the same tensile rate, consequently resulting in the fracture of the Cu layer first.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2740/1/012057