Paper The following article is Open access

Numerical study on smoke temperature and exhaust efficiency in electric cable tunnel

, , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation Dapeng Guo et al 2024 J. Phys.: Conf. Ser. 2728 012010 DOI 10.1088/1742-6596/2728/1/012010

1742-6596/2728/1/012010

Abstract

Cable tunnels are the lifeline of cities. Once a serious fire occurs on cables, the toxic smoke generated by cable combustion spreads and escapes, causing serious harm to the surrounding environment and personnel. The heat generated can also ignite nearby combustibles, causing casualties and property damage. Based on the above issues, using fluid dynamics methods, fire dynamic simulation was used to simulate cable tunnel fire scenarios under four variables: wind speed, fire source power, smoke outlet height, and smoke exhaust airflow. The temperature distribution law of the ceiling smoke layer inside the cable tunnel, smoke generation law, tunnel smoke exhaust efficiency, and other factors were clarified, revealing the impact mechanism of the above factors on tunnel fire smoke exhaust efficiency and smoke performance improvement methods. The research results indicate that the combination mode of exhaust air volume and ventilation air speed can effectively control tunnel fire smoke, providing a reference for the fire prevention design of cables in urban cable tunnels.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2728/1/012010