Brought to you by:
Paper The following article is Open access

Experimental Evaluation of Thermoelectric Generator Performance under Different Heat Conduction Boundary Conditions

and

Published under licence by IOP Publishing Ltd
, , Citation Haitao Wang and Qiang Fu 2023 J. Phys.: Conf. Ser. 2463 012015 DOI 10.1088/1742-6596/2463/1/012015

1742-6596/2463/1/012015

Abstract

Heat conduction boundary conditions play a crucial role in the performance of thermoelectric generators (TEG). The TEG output voltage and power were measured under constant temperature boundary and heat flux conditions to evaluate the TEG performance under different heat conduction boundary conditions. External loading pressure and thermal interface material (TIM) were applied to reduce the interfacial thermal contact resistance. In our measurement setup, a fast-response electronic load was used for the rapid current-voltage scan, which can eliminate the thermal drift caused by the Peltier effect. A guard heater arrangement is used to minimize heat loss. In constant temperature boundary conditions, reducing the thermal contact resistance can increase the effective temperature drop across the TEG module and significantly improve the output voltage and power. But in the constant heat flux conditions, since the heat flux flow through the TEG is unchanged, the temperature drop across the TEG was unaffected by the thermal contact resistance. As a result, the TEG performance was lightly influenced by the thermal contact resistance.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2463/1/012015