Paper The following article is Open access

Effect of argon annealing method on structural and ferromagnetic properties in Fe-doped SnO2 powders

, , , and

Published under licence by IOP Publishing Ltd
, , Citation S Nongkae et al 2021 J. Phys.: Conf. Ser. 2145 012031 DOI 10.1088/1742-6596/2145/1/012031

1742-6596/2145/1/012031

Abstract

Nanocrystalline powders of Fe-doped SnO2 (Sn1-xFexO2) (x = 0.00, 0.01, 0.03, 0.05) were prepared by a hydrothermal method. The powders were calcined in argon atmosphere at 600 °C for 2 h, causing phase transition from diamagnetic and weak ferromagnetic behavior to a ferromagnetic state. No trace and other magnetic impurity phases was detected in the samples with Fe content up to 3%. The calcined samples of Fe-doped SnO2 revealed the room temperature ferromagnetism with highest magnetization values of 434.07 memu/g at 15 kOe for x = 0.05. The room temperature ferromagnetism of samples originated from oxygen vacancies that occurred in the argon calcination process. In particular, oxygen vacancy shows a significant role in ferromagnetic coupling corresponding to F-center interaction.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2145/1/012031