Paper The following article is Open access

Probing guided monolayer semiconductor polaritons below the light line

, , , and

Published under licence by IOP Publishing Ltd
, , Citation V. Kondratyev et al 2021 J. Phys.: Conf. Ser. 2015 012069 DOI 10.1088/1742-6596/2015/1/012069

1742-6596/2015/1/012069

Abstract

In this work, we demonstrate an approach to study exciton-polaritons supported by transition metal dichalcogenide monolayers coupled to an unstructured planar waveguide below the light line. In order to excite and probe such waves propagating along the interface with the evanescent fields exponentially decaying away from the guiding layer, we employ a hemispherical ZnSe solid immersion lens (SIL) precisely positioned in the vicinity of the sample. We visualize the dispersion of guided polaritons using back focal (Fourier) plane imaging spectroscopy with the high-NA objective lens focus brought to the center of SIL. This results in the effective numerical aperture of the system exceeding an exceptional value of 2.2 in the visible range. In the experiment, we study guided polaritons supported by a WS2 monolayer transferred on top of a Ta2O5 plane-parallel optical waveguide. We confirm room-temperature strong light-matter coupling regime enhanced by ultra-low intrinsic ohmic and radiative losses of the waveguide. Note that in the experiment, total radiative losses can be broadly tuned by controlling SIL-to-sample distance. This gives a valuable degree of freedom for the study of polariton properties. Our approach lays the ground for future studies of light-matter interaction employing guided modes and surface waves.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2015/1/012069