Paper The following article is Open access

Deposition and characterization of amorphous carbon thin film by thermal CVD

, , , and

Published under licence by IOP Publishing Ltd
, , Citation Dayana Kamaruzaman et al 2020 J. Phys.: Conf. Ser. 1529 022049 DOI 10.1088/1742-6596/1529/2/022049

1742-6596/1529/2/022049

Abstract

Amorphous carbon-based material has attracted a considerable attention for optoelectronic and photovoltaic applications. This remarkable element has expected to have similar properties as silicon and highly stable. This work is focused on the deposition conditions of amorphous carbon thin film for optoelectronic and photovoltaic application. However, amorphous carbon has a complicated structure and high density of defects. Due to the limited factors of the deposited amorphous carbon film, a doping process is required. The amorphous carbon and iodine doped amorphous carbon thin films were deposited on glass and silicon substrates by thermal chemical vapor deposition (CVD) technique using camphor oil as the precursor. The effect of doping temperature in the a-C and a-C:I thin films on electrical and optical properties were characterized. The conductivity of a-C:I thin films increased with the doping temperature at 450°C and it shows large photoconductivity. The photovoltaic behaviour was improved by doping the a-C with the iodine. Effective doping will encourage the future prospect of low cost, clean and high efficiency of carbon-based device.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1529/2/022049