The following article is Open access

Alveolar macrophage accumulation rates, for 28 nm and 250 nm PSL, are mediated by separate mechanisms

and

Published under licence by IOP Publishing Ltd
, , Citation O R Moss and V A Wong 2009 J. Phys.: Conf. Ser. 151 012044 DOI 10.1088/1742-6596/151/1/012044

1742-6596/151/1/012044

Abstract

When macrophages accumulate 28 nm and 250 nm diameter polystyrene latex (PSL) beads, the accumulation rates should reflect differences in molecular and cellular function. We used a confocal microscope to measure the accumulation rates of nanoparticles by F344-rat-alveolar macrophages (~25,000 cells adhered to a 0.7 cm2 surface). Over the cells were layered 0.1 ml of media, and 0.1 ml of media-with-beads. Fresh cells were introduced for each exposure scenario. The maximum possible individual macrophage exposures were as follows: 8x106, 8x105, and 8x104 28 nm beads per macrophage; and 8x104 and 1.12x104 250 nm beads per macrophage. Accumulation rates were estimated over 23 minutes. The increase in bead accumulation-rate matched changes in bead-availability: 7x increase for 250 nm beads; 100x increase for 28 nm beads; and 700x increase for all bead availabilities. The maximum sustained 28 nm bead accumulation rate was > 30,000 /min (for 5 min). Increases in bead accumulation could be explained by two mechanisms: bead-diffusion; and, for the macrophage, macropinocytosis. Also for the highest concentrations of 28 nm beads, we saw a colligative threshold -- possibly due to beads masking the cell surface or obstructing cellular mechanisms.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/1742-6596/151/1/012044