Brought to you by:
Paper The following article is Open access

Analyses of the Gravimetric and Electrochemical Effects of C16H13N3O3 on Mild Steel Corrosion in 0.5 M H2SO4

, , , and

Published under licence by IOP Publishing Ltd
, , Citation Francis O. Edoziuno et al 2019 J. Phys.: Conf. Ser. 1378 032064 DOI 10.1088/1742-6596/1378/3/032064

1742-6596/1378/3/032064

Abstract

This study analyzed the gravimetric and electrochemical effects of C16H13N3O3 (methyl-5-benzoyl-2-benzimidazole carbamate: Mebendazole) on mild steel corrosion in 0.5 M H2SO4, for gaining insights on correlation and significance of differences between the two corrosion-monitoring techniques. For the gravimetric method, weight loss of mild steel specimens immersed in different C16H13N3O3 concentrations mixed in the 0.5 M H2SO4 were obtained for corrosion rates and inhibition efficiencies estimations. For the electrochemical approach, mild steel samples were subjected to potentiodynamic polarization experiments in the different C16H13N3O3 concentrations in 0.5 M H2SO4 that were employed for the gravimetric technique for obtaining instrumental readout of corrosion rate. Results showed that the corrosion rate from the electrochemical experiments exhibited excellent linear correlation (R = 99.91; Nash-Sutcliffe Efficiency = 99.83) with the dataset obtained from the gravimetric corrosion assessments. Both the gravimetric and electrochemical monitoring of mild steel corrosion gave inhibition efficiencies, η > 90%, by the different C16H13N3O3 concentrations for the study. Also, homeoscedastic and heteroscedastic student's t-test statistics indicated that the differences between the corrosion inhibition efficiencies from the electrochemical and gravimetric techniques were not significant, p-value = 0.9729, but significant for their corrosion rates: 1.52 × 10–6 > p-value > 8.15 × 10–9.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1378/3/032064