Brought to you by:
Paper The following article is Open access

Some remarks on analytical solutions for a damped quantum parametric oscillator

Published under licence by IOP Publishing Ltd
, , Citation Dieter Schuch 2019 J. Phys.: Conf. Ser. 1275 012033 DOI 10.1088/1742-6596/1275/1/012033

1742-6596/1275/1/012033

Abstract

The time-dependent Schrödinger equation for quadratic Hamiltonians has Gaussian wave packets as exact solutions. For the parametric oscillator with frequency ω(t), the width of these wave packets must be time-dependent. This time-dependence can be determined by solving a complex nonlinear Riccati equation or an equivalent real nonlinear Ermakov equation. All quantum dynamical properties of the system can easily be constructed from these solutions, e.g., uncertainties of position and momentum, their correlations, ground state energies, etc. In addition, the link to the corresponding classical dynamics is supplied by linearizing the Riccati equation to a complex Newtonian equation, actually representing two equations of the same kind: one for the real and one for the imaginary part. If the solution of one part is known, the missing (linear independent) solution of the other can be obtained via a conservation law for the motion in the complex plane. Knowing these two solutions, the solution of the Ermakov equation can be determined immediately plus the explicit expressions for all the quantum dynamical properties mentioned above. The effect of a dissipative, linear velocity dependent friction force on these systems is discussed.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1275/1/012033