Paper

Development of a semi-empirical 1.5D plasma fluid model for a single microdischarge in atmospheric pressure dielectric barrier discharges

, , and

Published 27 November 2019 © 2019 IOP Publishing Ltd
, , Citation K-M Lin et al 2019 Plasma Sources Sci. Technol. 28 115014 DOI 10.1088/1361-6595/ab515c

0963-0252/28/11/115014

Abstract

In this work, a semi-empirical 1.5D plasma fluid model (PFM) is proposed to model a single microdischarge (MD) in atmospheric pressure air dielectric barrier discharges (APADBDs). The species continuity equations and the electron energy density equation are solved in one-dimensional domain, while the Poisson equation is solved in the axisymmetric domain to capture the enhancement of the electric field in front of the streamer. The framework of air chemistry is considered and the effect of photoionization is modeled in the axisymmetric domain. The accumulation factor (AF) is introduced and determined by experimental data to model the accumulation of charged particles on the dielectric surface. The simulated results in two gaps are compared with experimental measurements. In the gap of 1.4 mm, the simulated electric current reaches 72 mA, which is close to the typically measured electric current. The simulated maximum wave velocity is around 1.7 × 106 m s−1, which is close to the available experimental data. The change of simulated charge density implies that the average accumulation of charged particles on the dielectric surface during each half period (HP) is around 40 nC cm−2, which is in the same order of magnitude as the average charge density evaluated in the previous measurements as 51.5 nC cm−2. The effect of AF is studied and shows that the AF determines both peak and duration of the electric current. In the gap of 2.0 mm, the simulated current reaches 113 mA, which is close to the typically measured current. Although the gap voltage of the 2.0 mm gap is higher than that of the 1.4 mm gap, the average electric field of the 2.0 mm gap is lower than that of the 1.4 mm gap before breakdown due to larger gap distance. The maximum wave velocity is faster than that simulated in the gap of 1.4 mm due to the longer gap distance for developing higher wave velocity as 2.4 × 106 m s−1. During each HP, the average accumulation of charge density on the dielectric surface reaches around 40 nC cm−2 which is almost identical to that simulated in the gap of 1.4 mm as observed experimentally. In general, the proposed semi-empirical 1.5D PFM captures the dynamics of a single MD in APADBDs.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Login

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

Please wait… references are loading.
10.1088/1361-6595/ab515c