ACCEPTED MANUSCRIPT

Collective dynamics of liquid sulphur across the polymerisation transition temperature probed by inelastic x-ray scattering

, , and

Accepted Manuscript online 9 May 2024 © 2024 IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/1361-648X/ad493f

10.1088/1361-648X/ad493f

Abstract

Inelastic x-ray scattering (IXS) experiments on liquid sulphur were carried out below (140◦C) and above (180◦C) the polymerisation temperature Tλ of about 159◦C to investigate changes in the collective dynamics of this unique liquid, that exhibits a liquid‒liquid transition. As reported earlier, broad longitudinal acoustic excitation signals were observed at both temperatures, and only the width of the quasielastic peaks slightly decreased when the temperature crossed the transition temperature. A model analysis was performed using a generalised Langevin formalism with a memory function having one thermal and two viscoelastic decay channels with the help of simple sparse modelling, and large positive deviations from the hydrodynamic sound velocity by 51‒54% were observed. The fast viscoelastic relaxation time τµis close to the correlation times of intermolecular stretching and bending motions of local sulphur connections in both ring and chain structures, and is similar to those of other molecular liquids. The small contrasts in the IXS spectra across the λ transition result in large changes in only the slow viscoelastic decay time τα of the memory function. The τα value at 140◦C matches the mixed internal/external torsional modes of S8 molecules well, whereas that at 180◦C has no corresponding molecular motion mode. The kinematic viscosity values at thesmaller than the minimum values of macroscopic shear viscosity, ivec ndicating that largeQ 0 limit are much changes in relaxation dynamics are expected with Q in the GHz and MHz excitation regimes.

Export citation and abstract BibTeX RIS

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.