Paper The following article is Open access

Effect of synthesis parameters on the structure and properties of carbon particles formed from amorphous fullerites

, , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation I N Lukina et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 848 012050 DOI 10.1088/1757-899X/848/1/012050

1757-899X/848/1/012050

Abstract

The effect of high-pressure synthesis temperature on the structure and indentation characteristics of the superelastic hard carbon formed from amorphous fullerites and on the tribological properties of the Co-based composite materials (CM) reinforced by the particles of such carbon has been studied by Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), indentation measurements, and tribological tests. It is shown that ball milling (for 48 h) of C60 fullerite crystals results in the amorphization of the product of fullerite transformation upon their high-pressure treatment at temperatures above the stability limit of fullerene molecule (∼800°C). An increase in synthesis temperature at 8 GPa from 800°C to 1200°C leads to a gradual graphitization of the structure of amorphous fullerite derived carbon. This decreases its hardness and indentation modulus from 32 to 18 GPa and from 256 to 95 GPa, respectively, and increases the elastic recovery (from 80% to 86%). The best tribological characteristics of the CM are attained at the maximum particle hardness, which is realized in the CM synthesized at 800°C. When the synthesis temperature is elevated to 1200°C, the friction coefficient and wear rate of the CM increase, but they remain substantially lower than those of the matrix cobalt.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/848/1/012050