Paper The following article is Open access

Mixed oxides derived from layered double hydroxides as novel catalysts for phenol photodegradation

, , and

Published under licence by IOP Publishing Ltd
, , Citation C M Puscasu et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 227 012105 DOI 10.1088/1757-899X/227/1/012105

1757-899X/227/1/012105

Abstract

The removal of organic pollutants is nowadays a very challenging aspect of the environmental research. There are strong interests to develop novel semiconducting photocatalysts able to efficiently promote advanced oxidation reactions. The development of photocatalysts based on the mixtures of mixed oxides derived from layered double hydroxides (LDHs) - a family of naturally occurring anionic clays - might offer novel environmental-friendly solutions for the cost effective removal of organic pollutants. This work presents ZnO/ZnAl2O4, ZnO/Zn2TiO4 and ZnO/ZnCr2O4 as novel photocatalytic formulations for phenol degradation under UV irradiation. They were obtained by the controlled thermal treatment of the layered double hydroxides matrices (LDHs), as precursors materials, type ZnM-LDH (M = Al3+, Cr3+ or Ti4+). The LDHs were synthesized by the co-precipitation method at a constant pH. Controlled calcination at 650°C gives rise to solutions of mixed metal oxides. The structural and nanoarchitectonics characteristics of the studied catalysts were described by: XRD, SEM/TEM and TG/DTG techniques. Results show that in the photocatalytic process of the phenol degradation from aqueous solutions, ZnO/ZnCr2O4 and ZnO/ZnAl2O4 showed the best performance degrading ∼98% of phenol after 3.5 hs and 5 hs, respectively; while ZnO/Zn2TiO4 has degraded almost 80 % after 7.5 hs of UV irradiation. These results open new opportunities in the development of new cost effective photoresponsive formulations able to facilitate the photo-degradation of the organic pollution as "green" solution for removal of dangerous pollutants.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/227/1/012105