Paper The following article is Open access

RRR and thermal conductivity of Ag and Ag-0.2 wt.%Mg alloy in Ag/Bi-2212 wires

, , and

Published under licence by IOP Publishing Ltd
, , Citation P Li et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 102 012027 DOI 10.1088/1757-899X/102/1/012027

1757-899X/102/1/012027

Abstract

Residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ∼ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2 wt.% Mg) wires as well as the resistivity of Ag and Ag-0.2 wt.% Mg in Ag/Bi- 2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi- 2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ∼ 220 while the oxide-dispersion strengthened Ag-Mg exhibits a RRR of ∼ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn't degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt. % Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/102/1/012027