The following article is Open access

Test beam results of a high granularity LuAG fibre calorimeter prototype

, , , , , , , , , , , , and

Published 3 May 2016 © CERN 2016
, , Citation A. Benaglia et al 2016 JINST 11 P05004 DOI 10.1088/1748-0221/11/05/P05004

1748-0221/11/05/P05004

Abstract

The progresses in the micropulling-down technique allow heavy scintillating crystals to be grown directly into a fibre geometry of variable shape, length and diameter. Examples of materials that can be grown with this technique are Lutetium Aluminum Garnets (LuAG, Lu3Al5O12) and Yttrium Aluminum Garnets (YAG, Y3Al5O12). Thanks to the flexibility of this approach, combined with the high density and good radiation hardness of the materials, such a technology represents a powerful tool for the development of future calorimeters. As an important proof of concept of the application of crystal fibres in future experiments, a small calorimeter prototype was built and tested on beam. A grooved brass absorber (dimensions 26cm×7cm×16cm) was instrumented with 64 LuAG fibres, 56 of which were doped with Cerium, while the remaining 8 were undoped. Each fibre was readout individually using 8 eightfold Silicon Photomultiplier arrays, thus providing a highly granular description of the shower development inside the module as well as good tracking capabilities. The module was tested at the Fermilab Test Beam Facility using electrons and pions in the 2–16 GeV energy range. The module performance as well as fibre characterization results from this beam test are presented.

Export citation and abstract BibTeX RIS

published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.

Please wait… references are loading.
10.1088/1748-0221/11/05/P05004