Paper The following article is Open access

The Impact of Nuclear Physics Uncertainties on Galactic Chemical Evolution Predictions

, , , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation Benoit Côté et al 2020 J. Phys.: Conf. Ser. 1668 012008 DOI 10.1088/1742-6596/1668/1/012008

1742-6596/1668/1/012008

Abstract

Modeling the evolution of the elements in the Milky Way is a multidisciplinary and challenging task. In addition to simulating the ∽ 13 billion years evolution of our Galaxy, chemical evolution simulations must keep track of the elements synthesized and ejected from every astrophysical site of interest (e.g., supernova, compact binary merger). The elemental abundances of such ejecta, which are a fundamental input for chemical evolution codes, are usually taken from theoretical nucleosynthesis calculations performed by the nuclear astrophysics community. Therefore, almost all chemical evolution predictions rely on the nuclear physics behind those calculations. In this proceedings article, we highlight the impact of nuclear physics uncertainties on galactic chemical evolution predictions. We demonstrate that nuclear physics and galactic evolution uncertainties both have a significant impact on interpreting the origin of neutron-capture elements in our Solar System. Those results serve as a motivation to create and maintain collaborations between the fields of nuclear astrophysics and galaxy evolution.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1668/1/012008