Brought to you by:
The following article is Open access

Cosmology for quadratic gravity in generalized Weyl geometry

, and

Published 26 April 2016 , , Citation Jose Beltrán Jiménez et al JCAP04(2016)046 DOI 10.1088/1475-7516/2016/04/046

1475-7516/2016/04/046

Abstract

A class of vector-tensor theories arises naturally in the framework of quadratic gravity in spacetimes with linear vector distortion. Requiring the absence of ghosts for the vector field imposes an interesting condition on the allowed connections with vector distortion: the resulting one-parameter family of connections generalises the usual Weyl geometry with polar torsion. The cosmology of this class of theories is studied, focusing on isotropic solutions wherein the vector field is dominated by the temporal component. De Sitter attractors are found and inhomogeneous perturbations around such backgrounds are analysed. In particular, further constraints on the models are imposed by excluding pathologies in the scalar, vector and tensor fluctuations. Various exact background solutions are presented, describing a constant and an evolving dark energy, a bounce and a self-tuning de Sitter phase. However, the latter two scenarios are not viable under a closer scrutiny.

Export citation and abstract BibTeX RIS

Article funded by SCOAP. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1475-7516/2016/04/046