Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T03:49:31.370Z Has data issue: false hasContentIssue false

Potential Dissemination of Antibiotic Resistance Genes From Transgenic Plants to Microorganisms

Published online by Cambridge University Press:  02 January 2015

Franck Bertolla*
Affiliation:
Laboratoire d'Ecologie Microbienne du Sol, Villeurbanne Cedex, France
Elisabeth Kay
Affiliation:
Laboratoire d'Ecologie Microbienne du Sol, Villeurbanne Cedex, France
Pascal Simonet
Affiliation:
Laboratoire d'Ecologie Microbienne du Sol, Villeurbanne Cedex, France
*
Laboratoire d'Ecologie Microbienne du Sol, UMR CNRS 5557, Batiment 741, Université Lyon I, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France

Abstract

Evidence that genes were transferred during evolution from plants to bacteria was obtained from nucleotide and protein sequence analyses. However, the extent of such transfers among phylogenetically distant organisms is limited by various factors, including those related to complexity of the environment and those endogenous to the bacteria, designed to prevent a drift of the genome integrity. The goal of this article is to give an overview of the potentials and limits of natural interkingdom gene transfers, with a particular focus on prokaryote originating sequences fitting the nuclear genome of transgenic plants.

Type
Reviews
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heinemann, JA. Genetics of gene transfer between species. Trends Genet 1991;7:181186.Google Scholar
2. Syvanen, M. Horizontal gene transfer: evidence and possible consequences. Annu Rev Genet 1994;28:237261.CrossRefGoogle ScholarPubMed
3. Smith, JM, Dowson, CG, Spratt, BG. Localized sex in bacteria. Nature 1991;349:2931.CrossRefGoogle ScholarPubMed
4. Courvalin, P. Plantes transgéniques et antibiotiques. La Recherche 1998;309:3640.Google Scholar
5. Griffith, F. The significance of pneumococcal types. J Hyg 1928;27:113159.CrossRefGoogle ScholarPubMed
6. Smith, HO, Danner, DB, Deich, RA. Genetic transformation. Annu Rev Biochem 1981;50:4168.Google Scholar
7. Gebhard, F, Smalla, K. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol Ecol 1999;28:261272.Google Scholar
8. Paget, E, Simonet, P. On the track of natural transformation in soil. FEMS Microbiol Ecol 1994;15:109118.Google Scholar
9. Khanna, M, Stotzky, G. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl Environ Microbiol 1992;58:19301939.Google Scholar
10. Paget, E, Jocteur Monrozier, L, Simonet, P. Adsorption of DNA on clay minerals: protection against DNase I and influence on gene transfer. FEMS Microbiol Lett 1992;97:3140.Google Scholar
11. Dubnau, D. The regulation of genetic competence in Bacillus subtilis . Mol Microbiol 1991;5:1118.Google Scholar
12. Pickup, RW. Development of molecular methods for the detection of specific bacteria in the environment. J Gen Microbiol 1991;137:10091019.Google Scholar
13. Lorenz, MG, Wackernagel, W. Bacterial gene transfer by genetic transformation in the environment. Microbiol Rev 1994;58:563602.Google Scholar
14. Elkins, C, Thomas, CE, Seifert, HS, Sparling, PF. Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 1991;173:39113913.Google Scholar
15. Smith, HO, Tomb, JF, Dougherty, BA, Fleishmann, RD, Venter, JC. Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 1995;269:538540.Google Scholar
16. Bickle, TA, Krüger, DH. Biology of DNA restriction. Microbiol Rev 1993;57:434450.Google Scholar
17. MacNeil, DJ. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis . J Bacteriol 1988;170:56075612.Google Scholar
18. Dreiseikelmann, B. Translocation of DNA across bacterial membranes. Microbiol Rev 1994;58:293316.Google Scholar
19. Khasanov, FK, Zvingila, DJ, Zainullin, AA, Prozorov, AA, Bashkirov, VI. Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology. Mol Gen Genet 1992;234:494497.CrossRefGoogle ScholarPubMed
20. Shen, P, Huang, HV. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 1986;112:441457.Google Scholar
21. Manivasakam, P, Weber, SC, McElver, J, Schiestl, RH. Micro-homology mediated PCR targeting in Saccharomyces cerevisiae . Nucl Acids Res 1995;23:27992800.Google Scholar
22. Harris-Warrick, RM, Lederberg, J. Interspecies transformation in Bacillus: sequence heterology as the major barrier. J Bacteriol 1978;133:12371245.Google Scholar
23. Roberts, MS, Cohan, FM. The effect of DNA sequence divergence on sexual isolation in Bacillus . Genetics 1993;134:401408.Google Scholar
24. Vagner, V, Ehrlich, CH. Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol 1988;170:39783982.Google Scholar
25. Smith, GR, Shultz, DW, Crasemann, JM. Generalized recombination: nucleotide sequence homology between chi recombinational hotspots. Cell 1980;19:785793.Google Scholar
26. Camerini-Otero, RD, Heish, P. Homologous recombination in prokaryotes and eukaryotes. Annu Rev Genet 1995;29:509552.CrossRefGoogle ScholarPubMed
27. Masure, RH, Pearce, JB, Shio, H, Spelleberg, B. Membrane targeting of RecA during genetic transformation. Mol Microbiol 1998;27:845852.Google Scholar
28. Mongold, JA. DNA repair and the evolution of transformation in Haemophilus influenzae . Genetics 1992;132:893898.Google Scholar
29. Matic, I, Rayssignier, C, Radman, M. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 1995;80:507515.Google Scholar
30. Rayssiguier, C, David, S, Radman, M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 1989;342:396401.Google Scholar
31. Gebhard, F, Smalla, K. Transformation of Acinetobacter sp BD413 by transgenic sugar beet DNA. Appl Env Microbiol 1998;64:15501554.Google Scholar
32. de Vries, J, Wackernagel, W. Detection of nptII (kanamycin resistance) gene in genomes of transgenic plants by marker-rescue transformation. Mol Gen Genet 1998;257:606613.Google Scholar
33. Hoffmann, T, Golz, C, Schieder, O. Foreign DNA sequences are received by a wild type strain of Aspergillus niger after co-culture with transgenic higher plants. Curr Genet 1994;27:7076.Google Scholar
34. Schlüter, K, Fütterer, J, Potrycus, I. Horizontal gene transfer from transgenic potatoe line to a bacterial pathogen (Erwinia Chrysanthemi) occurs—if at all—at an extremely low frequency. Biotechnology 1995;13:10941098.Google Scholar
35. Broer, I, Dröge-Laser, W, Gerke, M. Examination of the putative horizontal gene transfer from transgenic plants to Agrobacteria . In: Schmidt, ER, Hankeln, T, eds. Transgenic Organisms and Biosafety: Horizontal Gene Transfer, Stability of DNA, and Expression of Transgenes. Heidelberg, Germany: Springer Verlag; 1996:6670.Google Scholar
36. Mitten, D, Redenbaugh, K, Lindemann, J. Evaluation of potential gene transfer from transgenic plant. In: Schmidt, ER, Hankeln, T, eds. Transgenic Organisms and Biosafety: Horizontal Gene Transfer, Stability of DNA, and Expression of Transgenes. Heidelberg, Germany: Springer Verlag; 1996:95100.Google Scholar
37. Bertolla, F, Van Gijsegem, F, Nesme, X, Simonet, E. Conditions for natural transformation of Ralstonia solanacearum . Appl Environ Microbiol 1997;63:49654968.Google Scholar
38. Bertolla, F, Brito, B, Frostegard, A, Nesme, X, Simonet, P. During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol Plant Microbe Interact 1999;12:467472.Google Scholar
39. Glick, BR. Metabolic load and heterologous gene expression. Biotechnol Adv 1995;13:247261.Google Scholar
40. Juni, E, Heym, GA. Transformation assay for identification of psychotrophic achromobacters. Appl Env Microbiol 1980;40:11061114.Google Scholar
41. Juni, E, Janick, A. Transformation of Acinetobacter calcoaceticus (Bacterium anitratum) . J Bacteriol 1969;98:281288.Google Scholar
42. Stevens, SE, Porter, RD. Heterospecific transformation among cyanobacteria. J Bacteriol 1986;167:10741076.Google Scholar
43. Shestakov, SV, Khyen, NT. Evidence for genetic transformation in blue-green alga Anacystis nidulans . Mol Gen Genet 1970;107:372375.Google Scholar
44. Page, WJ. Genetic transformation of molybdenum-starved Azotobacter vinelandii: increased transformation frequency and recipient range. Can J Microbiol 1985;31:659662.CrossRefGoogle Scholar
45. Mulder, JA, Venema, G. Isolation and partial characterization of Bacillus subtilis mutants impaired in DNA entry. J Bacteriol 1982;150:260268.CrossRefGoogle ScholarPubMed
46. Worrell, VE, Nagle, DP, McCarthy, D, Eisenbraun, A. Genetic transformation system in archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol 1988;170:653656.Google Scholar
47. Bertani, G, Baresi, L. Genetic transformation in the methanogen Methanococcus voltae PS. J Bacteriol 1987;169:27302738.Google Scholar
48. O'Connor, M, Wopat, A, Hanson, RS. Genetic transformation Methylobacterium organophilum . J Gen Microbiol 1977;98:265272.Google Scholar
49. Tigari, S, Moseley, BEE. Transformation in Micrococcus radiodurans: measurement of various parameters and evidence for multiple, independently segregating genomes per cell. J Gen Microbiol 1980;119:287296.Google Scholar
50. Nogard, MV, Imaeda, T. Physiological factors involved in the transformation of Mycobacterium smegmatis . J Bacteriol 1978;133:12541262.Google Scholar
51. Trehan, K, Sinha, U. Genetic transfer in a nitrogen-fixing filamentous cyanobacterium. J Gen Microbiol 1981;124:349352.Google Scholar
52. Carlson, CA, Pierson, LS, Rosen, JJ, Ingraham, JL. Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol 1983;153:9399.Google Scholar
53. Courtois, J, Courtois, B, Guillaume, J. High frequency transformation of Rhizobium meliloti . J Bacteriol 1988;170:59255927.CrossRefGoogle ScholarPubMed
54. Roelants, R, Konvalinkova, V, Mergeay, M, Lurquin, PF, Ledoux, L. DNA uptake by Streptomyces species. Biochim Biophys Acta 1976;442:117122.Google Scholar
55. Grigorieva, G, Shestakov, S. Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett 1982;13:153162.Google Scholar
56. Hopwood, DA, Wright, HM. Transformation in Thermoactinomyces vulgaris . J Gen Microbiol 1972;71:383398.Google Scholar
57. Koyama, Y, Hoshino, T, Tomizuka, N, Furukawa, K. Genetic transformation of the extreme thermophile Thermus thermophilus and of others Thermus spp. J Bacteriol 1986;166:338340.CrossRefGoogle Scholar
58. Yankofsky, SA, Gurevich, R, Grimland, N, Stark, AA. Genetic transformation of obligately chemolithotrophic thiobacilli. J Bacteriol 1983; 153:652657.Google Scholar
59. Frischer, ME, Thurmond, JM, Paul, JH. Natural plasmid transformation in a high frequency of transformation marine Vibrio strain. Appl Env Microbiol 1990;56:34393444.Google Scholar
60. LeClerc, JE, Setlow, JK. Transformation in Haemophilus influenzae . In: Grell, RF, ed. Mechanisms in Recombination. New York City, NY: Plenum Publishing Corp; 1975:187207.Google Scholar
61. Juni, E, Heym, GA, Newcomb, RD. Identification of Morexella bovis by qualitative genetic transformation on nutritional assays. Appl Env Microbiol 1988;54:13041306.Google Scholar