Brought to you by:

General Relativistic Effects in the Neutrino-driven Wind and r-Process Nucleosynthesis

and

©1997. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation Christian Y. Cardall and George M. Fuller 1997 ApJ 486 L111 DOI 10.1086/310838

1538-4357/486/2/L111

Abstract

We discuss general relativistic effects in the steady state neutrino-driven "wind" that may arise from nascent neutron stars. In particular, we generalize previous analytic estimates of the entropy per baryon S, the mass outflow rate dot M, and the dynamical expansion timescale τdyn. We show that S increases and τdyn decreases with increasing values of the mass-to-radius ratio describing the supernova core. Both of these trends indicate that a more compact core will lead to a higher number of neutrons per seed nucleus. Such an enhancement in the neutron/seed ratio may be required for successful r-process nucleosynthesis in neutrino-heated supernova ejecta.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1086/310838