Skip to main content

Advertisement

Log in

Neuronal nitric oxide synthase expression in cerebellar mutant mice

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a diffusible, multifunctional signaling molecule found in many areas of the brain. NO signaling is involved in a wide array of neurophysiological functions including synaptogenesis, modulation of neurotransmitter release, synaptic plasticity, central nervous system blood flow and cell death. NO synthase (NOS) activity regulates the production of NO and the cerebellum expresses high levels of nitric oxide synthase (NOS) in granule, stellate and basket cells. Cerebellar mutant mice provide excellent opportunities to study changes of NO/NOS concentrations and activities to gain a greater understanding of the roles of NO and NOS in cerebellar function. Here, we have reviewed the current understanding of the functional roles of NO and NOS in the cerebellum and present NO/NOS activities that have been described in various cerebellar mutant mice and NOS knockout mice. NO appears to exert neuroprotective effects at low to moderate concentrations, whereas NO becomes neurotoxic as the concentration increases. Excessive NO production can cause oxidative stress to neurons, ultimately impairing neuronal function and result in neuronal cell death. Based on their genetics and cerebellar histopathology, some of cerebellar mutant mice display similarities with human neurological conditions and may prove to be valuable models to study several human neurological disorders, such as autism and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bredt DS, Snyder SH. Nitric oxide, a physiological messenger molecule. Ann Rev Biochem 1994; 63: 175–195.

    PubMed  CAS  Google Scholar 

  2. Culotta E, Koshland Jr. DE. NO news is good news. Science 1992; 258: 1862–1865.

    PubMed  CAS  Google Scholar 

  3. Virgili M, Monti B, LoRusso A, Bentivogli M, Contestabile A. Developmental effects of in vivo and in vitro inhibition of nitric oxide synthase in neurons. Brain Res 1999; 839: 164–172.

    PubMed  CAS  Google Scholar 

  4. Wang W, Nakayama T, Inoue N, Kato T. Quantitative analysis of nitric oxide synthase expressed in developing and differentiating rat cerebellum. Dev Brain Res 1998; 111: 65–75.

    CAS  Google Scholar 

  5. Drapier J-C, Ducrocq C. Introduction: molecular and functional modifications by nitric oxide and its derivatives. Cell Mol Life Sci 1999; 55: 1001–1002.

    CAS  Google Scholar 

  6. Palmer RM, Aston DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–666.

    PubMed  CAS  Google Scholar 

  7. Faraci FM, Brian JE. Nitric oxide and the cerebral circulation. Stroke 1994; 25: 692–703.

    PubMed  CAS  Google Scholar 

  8. Gaily JA, Montague RP, Reeke GN, Edelman GE. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Nat Acad Sci 1990; 87: 3547–3551.

    Google Scholar 

  9. Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system. Ann Rev Physiol 1995; 57: 683–706.

    CAS  Google Scholar 

  10. Himi T, Ikeda M, Sato I, Yuasa T, Murota S. Purkinje cells express neuronal nitric oxide synthase after methylmercury administration. Brain Res 1996; 718: 189–192.

    PubMed  CAS  Google Scholar 

  11. Holscher C. Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity. Trends Neurosci 1997; 20: 298–303.

    PubMed  CAS  Google Scholar 

  12. Noda Y, Yamada K, Komori Y, Sugihara H, Furukawa H, Nabeshima T. Role of nitric oxide in the development of tolerance and sensitization to behavioral effects of phencyclidine in mice. Brit J Pharmacol 1996; 117: 1579–1585.

    CAS  Google Scholar 

  13. Ohyu J, Takashima S. Developmental characteristics of neuronal nitric oxide synthase (nNOS) immunoreactive neurons in fetal to adolescent human brains. Dev Brain Res 1998; 110: 193–202.

    CAS  Google Scholar 

  14. Schuman EM, Madison DV. Nitric oxide and synaptic function. Ann Rev Neurosci 1994; 17: 153–183.

    PubMed  CAS  Google Scholar 

  15. Wiesinger H. Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog Neurobiol 2001; 64: 365–391.

    PubMed  CAS  Google Scholar 

  16. Yang G, Huard JM, Beitz AJ, Ross ME, Iadecola C. Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J Neurosci 2000; 20: 6968–6973.

    PubMed  CAS  Google Scholar 

  17. Dawson TM, Bredt DS, Synder SH. A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 1992; 32: 297–311.

    PubMed  CAS  Google Scholar 

  18. Leong S-K, Ruan R-S, Zhang Z. A critical assessment of the neurodestructive and neuroprotective effects of nitric oxide. Ann NY Acad Sci 2002; 962: 161–181.

    PubMed  CAS  Google Scholar 

  19. Moneada S, Higgs A. The L-arginine-nitric oxide pathway. New Eng J Med 1993; 27: 2002–2012.

    Google Scholar 

  20. Boyd CS, Cadenas E. Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis. Biol Chem 2002; 383: 411–423.

    PubMed  CAS  Google Scholar 

  21. Dawson VL, Dawson TM. Nitric oxide neurotoxicity. J Chem Neuroanat 1996; 10: 179–190.

    PubMed  CAS  Google Scholar 

  22. Trenago M, Virgili M, Monti B, Guarnieri T, Contestabile A. Alteration of neuronal nitric oxide synthase activity and expression in the cerebellum and the forebrain of microencephalic rats. Brain Res 1998; 793: 54–60.

    Google Scholar 

  23. Bredt DS, Snyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Nat Acad Sci 1990; 87: 682–685.

    PubMed  CAS  Google Scholar 

  24. Okada D. Differential effects of protein kinase C on neuronal nitric oxide synthase activity in rat cerebellar slices and in vitro. J Chem Neuroanat 1996; 10: 213–220.

    PubMed  CAS  Google Scholar 

  25. Babbedge RC, Hart SL, Moore PK. Anti-nociceptive activity of nitric oxide synthase inhibitors in the mouse: dissociation between the effect of L-NAME and L-NMMA. J Pharm Pharmacol 1993; 45: 77–79.

    PubMed  CAS  Google Scholar 

  26. Ikeda M, Matsui K, Ishihara Y, Morita I, Murota S-I, Yuasa T, Miyatake T. Cerebellar nitric oxide synthase, cGMP and motor function in two lines of cerebellar mutant mice, Staggerer and Wriggle Mouse Sagami. Neurosci Lett 1994; 168: 65–68.

    PubMed  CAS  Google Scholar 

  27. Schilling K, Schmidt HHHW, Baader SL. Nitric oxide synthase expression reveals compartments of cerebellar granule cells and suggests a role for mossy fibers in their development. Neuroscience 1994; 59: 893–903.

    PubMed  CAS  Google Scholar 

  28. Stojkovic T, Colin C, le Saux F, Jacque C. Specific pattern of nitric oxide synthase expression in glial cells after hippocampal injury. Glia 1998; 22: 329–337.

    PubMed  CAS  Google Scholar 

  29. Catania MV, Aronica E, Yankaya B, Troost D. Increased expression of neuronal nitric oxide synthase spliced variants in reactive astrocytes of amyotrophic lateral sclerosis human spinal cord. J Neurosci 2001; 21: RC148(1–5).

    Google Scholar 

  30. Catania MV, Gluffrida R, Barbagallo G, Aronica E, Gorter JA, Dell’Albani, Ravagna A, Calabrese V, Gluffrida-Stella AM. Upregulation of neuronal nitric oxide synthase in in vitro stellate astrocytes and in vivo reactive astrocytes after electrically induced status epilepticus. Neurochem Res 2003; 28: 607–615.

    PubMed  Google Scholar 

  31. Simic G, Lucassen PJ, Krsnik Z, Kruslin B, Kostovic I, Winblad B, Bogdanovi N. nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer’s disease. Exp Neurol 2000; 165: 12–26.

    PubMed  CAS  Google Scholar 

  32. Jesko H, Chalimoniuk M, Strosznajder JB. Activation of constitutive nitric oxide synthase(s) and absence of inducible isoform in aged rat brain. Neurochem Internat 2003; 42: 315–322.

    CAS  Google Scholar 

  33. Henry Y, Guissani A. Interactions of nitric oxide with hemoproteins: roles of nitric oxide in mitochondria. Cell Mol Life Sci 1999; 55: 1003–1014.

    PubMed  CAS  Google Scholar 

  34. Virgili M, Facchinetti F, Sparapani M, Tregnago M, Lucchi R, Dall’Olio R, Gandolfi O, Contestabile A. Neuronal nitric oxide synthase is permanently decreased in the cerebellum of rats subjected to chronic neonatal blockade of N-methyl-D-aspartate receptors. Neurosci Lett 1998; 258: 1–4.

    PubMed  CAS  Google Scholar 

  35. Yu W-J, Juang S-W, Liu T-P, Cheng J-T. Decrease of neuronal nitric oxide synthase in the cerebellum of aged rats. Neurosci Lett 2000; 291: 37–40.

    PubMed  CAS  Google Scholar 

  36. Balazs R, Jorgensen OS, Hack N. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 1988; 27: 437–451.

    PubMed  CAS  Google Scholar 

  37. Hermeneglido C, Montoliu C, Llanasola M, Munoz M-D, Gaztelu J-M, Minana M-D, Felipo V. Chronic hyperammonemia impairs the glutamate-nitric oxide-cyclic GMP in cerebellar neurons in culture and in the rat in vivo. Eur J Neurosci 1998; 10: 3201–3209.

    Google Scholar 

  38. Llansola M, Minana M-D, Montoliu C, Saez R, Corbalan R, Manzo L, Felipo V. Prenatal exposure to aluminum reduces expression of neuronal nitric oxide synthase and of soluble guanylate cyclase and impairs glutamatergic neurotransmission in rat cerebellum. J Neurochem 1999; 73: 712–718.

    PubMed  CAS  Google Scholar 

  39. Yamada K, Nabeshima T. Two pathways of nitric oxide production through glutamate receptors in the rat cerebellum in vivo. Neurosci Res 1997; 28: 93–102.

    PubMed  CAS  Google Scholar 

  40. Hernandez-Viadel M, Montoliu C, Monfort P, Canales JJ, Erceg S, Rowan M, Ceccatelli S, Felipo V. Chronic exposure to 2,5-hexanedione impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in rat brain in vivo. Neurochem International 2003; 42: 525–533.

    CAS  Google Scholar 

  41. Kitano T, Matsumura S, Seki T, Hikida T, Sakimura K, Nagano T, Mishina M, Nakanishi S, Ito S. Characterization of N-methyl-D-aspartate receptor subunits involved in acute ammonia toxicity. Neurochem International 2004; 44: 83–90.

    CAS  Google Scholar 

  42. Chen G, Dunbar RL, Gao W, Ebner TJ. Role of calcium, glutamate neurotransmission, and nitric oxide in spreading acidification and depression in the cerebellar cortex. J Neurosci 2001; 21: 9877–9887.

    PubMed  CAS  Google Scholar 

  43. Okada D. Protein kinase C modulates calcium sensitivity of nitric oxide synthase in cerebellar slices. J Neurochem 1995; 64: 1298–1304.

    PubMed  CAS  Google Scholar 

  44. Morton DB, Bredt DS. Norepinephrine increases cyclic GMP levels in cerebellar cells from neuronal nitric oxide synthase knockout mice. J Neurochem 1998; 71: 440–443.

    PubMed  CAS  Google Scholar 

  45. Smith SL, Otis TS. Persistent changes in spontaneous firing of Purkinje neurons triggered by the nitric oxide signaling cascade. J Neurosci 2003; 23: 367–372.

    PubMed  CAS  Google Scholar 

  46. Wall MJ. Endogenous nitric oxide modulates GABAergic transmission to granule cells in adult rat cerebellum. J Neurosci 2003; 18: 869–878.

    Google Scholar 

  47. Frisch D, Dere E, De Souza Silva MA, Godecke A, Schrader J, Huston JP. Superior water maze performance and increase in fearrelated behavior in the endothelial nitric oxide synthase-deficient mouse together with monoamine changes in cerebellum and ventral striatum. J Neurosci 2000; 20: 6694–6700.

    PubMed  CAS  Google Scholar 

  48. Rodrigo J, Alonso D, Fernandez AP, Serrano J, Richart A, Lopez JC, Santacana M, Martinez-Murillo R, Moncada S, Bentura ML, Ghiglione M, Uttenthal LO. Neuronal and inducible nitric oxide synthase expression and protein nitration in rat cerebellum after oxygen and glucose deprivation. Brain Res 2001; 909: 20–45.

    PubMed  CAS  Google Scholar 

  49. Liu B, Gao H-M, Wang J-Y, Jeohn G-H, Cooper CL, Hong J-S. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann NY Acad Sci 2002; 962: 318–331.

    PubMed  CAS  Google Scholar 

  50. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxylradical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Nat Acad Sci 1990; 87: 1620–1624.

    PubMed  CAS  Google Scholar 

  51. Bredt DS, Snyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Nat Acad Sci 1989; 86: 9030–9033.

    PubMed  CAS  Google Scholar 

  52. Chabrier P-E, Demerle-Pallardy C, Auguet M. Nitric oxide synthases: targets for therapeutic strategies in neurological diseases. Cell Mol Life Sci 1999; 55: 1029–1035.

    PubMed  CAS  Google Scholar 

  53. Serrano J, Encinas JM, Salas E, Fernandez AP, Castro-Blanco S, Fernandez-Vizarra P, Bentura ML, Rodrigo J. Hypobaric hypoxia modifies constitutive nitric oxide synthase activity and protein nitration in the rat cerebellum. Brain Res 2003; 976: 209–229.

    Google Scholar 

  54. Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown RH, Jr. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 1997; 42: 644–654.

    PubMed  CAS  Google Scholar 

  55. Good PF, Werner P, Hsu A, Olanow CW, Perl DP. Evidence of neuronal oxidative damage in Alzheimer’s disease. Am J Pathol 1996; 149: 21–28.

    PubMed  CAS  Google Scholar 

  56. Good PF, Hsu A, Werner P, Perl DP, Olanow CW. Protein nitration in Parkinson’s disease. Exp Neurol 1998; 57: 338–342.

    CAS  Google Scholar 

  57. Chalimoniuk M, Strosznajder J. NMDA receptor-dependent nitric oxide and cGMP synthesis in brain hemispheres and cerebellum during reperfusion after transient forebrain ischemia in gerbils: Effect of 7-nitroindazole. J Neurosci Res 1998; 54: 681–690.

    PubMed  CAS  Google Scholar 

  58. Estevez AG, Jordan J. Nitric oxide and Superoxide, a deadly cocktail. Ann NY Acad Sci 2002; 962: 207–211.

    PubMed  CAS  Google Scholar 

  59. Mohanakumar KP, Thomas B, Sharma SM, Chiueh DD. Nitric oxide - An antioxidant and neuroprotector. Ann NY Acad Sci 2002; 962: 389–401.

    PubMed  CAS  Google Scholar 

  60. Dawson TM, Steiner JP, Dawson VL, Dinerman JL, Uhl GR, Snyder SH. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Nat Acad Sci 1993; 90: 9808–9812.

    PubMed  CAS  Google Scholar 

  61. Macleod MR, Butcher SP. Nitric-oxide-synthase-mediated cyclic guanosine monophosphate production in neonatal rat cerebellar prisms is resistant to calcineurin inhibition. Neurosci Lett 2002; 322: 41–44.

    PubMed  CAS  Google Scholar 

  62. Ciani E, Guidi S, Bartesaghi R, Contestabile A. Nitric oxide regulates cGMP-dependent cAMP-responsive protein phosphorylation and Bcl-2 expression in cerebellar neurons: implication for a survival role of nitric oxide. J Neurochem 2002; 82: 1282–1289.

    PubMed  CAS  Google Scholar 

  63. Gudi T, Casteel DE, Vinson C, Boss GR, Pilz RB. NO activation of fos promotor elements requires nuclear translocation of G-kinase I and CREB phosphorylation but is independent of MAP kinase activation. Oncogene 2000; 19: 6324–6333.

    PubMed  CAS  Google Scholar 

  64. Ciani E, Virgili M, Contestabile A. Akt pathway mediates a cGMP-dependent survival role of nitric oxide in cerebellar granule neurons. J Neurochem 2002; 81: 218–228.

    PubMed  CAS  Google Scholar 

  65. Hayashi T, Katsumi Y, Mukai T, Inoue M, Nagahama Y, Oyanagi C, Yamauchi H, Shibasaki H, Fukuyama H. Neuronal nitric oxide has a role as a perfusion regulator and a synaptic modulator in cerebellum but not in neocortex during somatosensory stimulation-An animal PET study. Neurosci Res 2002; 44: 155–165.

    PubMed  CAS  Google Scholar 

  66. Yamamoto M, Schwarting GA, Crandall JE. Altered 9-O acetylation of disialogangliosides in cerebellar Purkinje cells of the nervous mutant mouse. Brain Res 1994; 662: 223–232.

    PubMed  CAS  Google Scholar 

  67. Ma J, Meng W, Ayata C, Huang PL, Fishman MC, Moskowitz MA. L-NNA-sensitive regional cerebral blood flow augmentation during hypercapnia in type III NOS mutant mice. Am J Physiol 1996; 271: H1717-H1719.

    PubMed  CAS  Google Scholar 

  68. Fletcher CF, Lutz CM, O’Sullivan TN, Shaughnessy Jr. JD, Hawkes R, Frankel WN, Copeland NG, Jenkins NA. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 1996; 87: 607–617.

    PubMed  CAS  Google Scholar 

  69. Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, Mori E, Copeland NG, Jenkins NA, Matsushita K, Matsuyama Z, Imoto K. Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tgro1). J Neurosci 2000; 20: 5654–5662.

    PubMed  CAS  Google Scholar 

  70. Levitt P, Noebels JL. Mutant mouse tottering: Selective increase of locus coeruleus axons in a defined single-locus mutation. Proc Nat Acad Sci 1981; 78: 4630–4634.

    PubMed  CAS  Google Scholar 

  71. Rhyu IJ, Abbott LC, Walker DB, Sotelo C. An ultrastructural study of granule cell/Purkinje cell synapses in tottering (tg/tg), leaner (tg la/tgla) and compound heterozygous, tottering/leaner (tg/ tg la) mice. Neuroscience 1999; 90: 717–728.

    PubMed  CAS  Google Scholar 

  72. Suh YS, Oda S, Kang YH, Kim H, Rhyu IJ. Apoptotic cell death of cerebellar granule cells in rolling mouse Nagoya. Neurosci Lett 2002; 325: 1–4.

    PubMed  CAS  Google Scholar 

  73. Zwingman TA, Neumann PE, Noebels JL, Herrup K. Rocker is a new variant of the voltage-dependent calcium channel gene Cacnala. J Neurosci 2001; 21: 1169–1178.

    PubMed  CAS  Google Scholar 

  74. Isaacs KR, Abbott LC. Development of the paramedian lobule of the cerebellum in wild type and tottering mice. Dev Neurosci 1992; 14: 386–393.

    PubMed  CAS  Google Scholar 

  75. Heckroth JA, Abbott LC. Purkinje cell loss from alternating sagittal zones in the cerebellum of leaner mutant mice. Brain Res 1994; 658: 93–104.

    Article  PubMed  CAS  Google Scholar 

  76. Herrup K, Wilczynski SL. Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience 1982; 7: 2185–2196.

    PubMed  CAS  Google Scholar 

  77. Lau FC. Apoptosis, reduced intracellular free calcium level and altered gene expression in the cerebellum of the leaner mutant mouse. PhD Dissertation, Texas A&M University, College Station, Texas, 1999.

    Google Scholar 

  78. Frank TC, Nunley M, Renaldo R, Abbott LC. Fluoro-Jade identification of cerebellar granule cell and Purkinje cell death in the α1A calcium ion channel mutant mouse, leaner. Neuroscience 2003; 118: 667–680.

    PubMed  CAS  Google Scholar 

  79. Dove LS, Nahm SS, Murchison D, Abbott LC, Griffith WH. Altered calcium homeostasis in cerebellar Purkinje cells of leaner mutant mice. J Neurophys 2000; 84: 513–524.

    CAS  Google Scholar 

  80. Rhyu IJ, Nahm S, Hwang SJ, Kim H, Suh YS, Oda SI, Frank TC, Abbott LC. Altered neuronal NOS expression in the cerebellum of calcium channel mutant mice. Brain Res 2003; 977: 129–140.

    PubMed  CAS  Google Scholar 

  81. Doulazmi M, Hadj-Sahraoui N, Frederic F, Mariani J. Diminishing Purkinje cell populations in the cerebella of aging heterozygous Purkinje cell degeneration but not heterozygous nervous mice. J Neurogenet 2002; 16(2): 111–123.

    PubMed  Google Scholar 

  82. Landis SC. Histochemical demonstration of mitochondrial dehydrogenases in developing normal and nervous mutant mouse Purkinje cells. J Histochem Cytochem 1975; 23: 136–143.

    PubMed  CAS  Google Scholar 

  83. Brion JP, Guilleminot J, Nunez J. Dendritic and axonal distribution of the microtubule-associated proteins MAP2 and tau in the cerebellum of the nervous mutant mouse. Dev Brain Res 1988; 44: 221–232.

    CAS  Google Scholar 

  84. Ikeda M, Morita I, Murota S-I, Sekiguchi F, Yuasa T, Miyatake T. Cerebellar nitric oxide synthase activity is reduced in nervous and Purkinje cell degeneration mutants by not in climbing fiberlesioned mice. Neurosci Lett 1993; 155: 148–150.

    PubMed  CAS  Google Scholar 

  85. Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Fernandez-Gonzalez J-Z. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nnal. Science 2002; 295: 1904–1906.

    PubMed  CAS  Google Scholar 

  86. Strazielle C, Lalonde R, Hebert C, Reader TA. Regional brain distribution of noradrenaline uptake sites, and of alpha l-alpha2- and beta-adrenergic receptors in PCD mutant mice: a quantitative autoradiographic study. Neuroscience 1999; 94: 287–304.

    PubMed  CAS  Google Scholar 

  87. Gillardon F, Baurle J, Wickert H, Grusser-Cornehls, Zimmermann M. Differential regulation of bcl-2, bax, c-fos, junB, and krox-24 expression in the cerebellum of Purkinje cell degeneration mutant mice. J Neurosci Res 1995; 41: 708–715.

    PubMed  CAS  Google Scholar 

  88. Herrup K. Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Dev Brain Res 1983; 11: 267–274.

    Google Scholar 

  89. Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K, Russell LB, Mueller KL, van Berkel V, Birren BW, Kruglyak L, Lander ES. Disruption of the nuclear hormone receptor RORα in staggerer mice. Nature 1996; 379: 736–739.

    PubMed  CAS  Google Scholar 

  90. Jarvis CI, Staels B, Brugg BB, Lemaigre-Dubreuil Y, Tedgui A, Mariani J. Age-related phenotypes in the staggerer mouse expand the ROR alpha nuclear receptor’s role beyond the cerebellum. Mol Cell Endocrin 2002; 186: 1–5.

    CAS  Google Scholar 

  91. Steinmayr M, Andre E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, Daniel H, Crepel F, Mariani J, Sotelo C, Becker-Andre M. Staggerer phenotype in retinoid-related orphan receptor α-deficient mice. Proc Nat Acad Sci 1998; 97: 3960–3965.

    Google Scholar 

  92. Besnard S, Silvestre J-S, Duriez M, Bakouche J, Lemaigre-Dubreuil Y, Mariani J, Levy BI, Tedgui A. Increased ischemiainduced angiogenesis in the staggerer mouse, a mutant of the nuclear receptor Rorα. Circ Res 2001; 89: 1209–1215.

    PubMed  CAS  Google Scholar 

  93. Lau P, Bailey P, Dowhan DH, Muscat GEO. Exogenous expression of a dominant negative RO Nucleic. Acids Res 1999; 27: 411–420.

    CAS  Google Scholar 

  94. Meyer T, Kneissel M, Mariani J, Fournier B. In vitro and in vivo evidence for orphan nuclear receptor ROR alpha function in bone metabolism. Proc Nat Acad Sci 2000; 97: 9197–9202.

    PubMed  CAS  Google Scholar 

  95. Inoue Y, Matsumura Y, Inoue K, Ichikawa R, Takayama C. Abnormal synaptic architecture in the cerebellar cortex of a new dystonic mutant mouse, Wriggle Mouse Sagami. Neurosci Res 1993; 16: 39–48.

    PubMed  CAS  Google Scholar 

  96. Takahashi K, Kitamura K. A point mutation in a plasma membrane Ca2+-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem Biophys Res Comm 1999; 261: 773–778.

    PubMed  CAS  Google Scholar 

  97. Ikeda M, Mikuni M, Nishikawa T, Takahasi K. A neurochemical study of a new mutant mouse presenting myoclonus-like involuntary movement: a possible model of spontaneous serotonergic hyperactivity. Brain Res 1989; 495: 337–348.

    PubMed  CAS  Google Scholar 

  98. Ishikawa K, Shibanoki S, Kubo T, Kogure M, Imamura Y, Osawa N, Ohmura M, Mikoshiba K. Functional difference in monoamine transmitters in the behaviorally abnormal mouse mutant (wriggle mouse sagami). Neurosci Lett 1989; 103: 343–348.

    PubMed  CAS  Google Scholar 

  99. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 1993; 75: 1273–1286.

    PubMed  CAS  Google Scholar 

  100. Lev-Ram V, Nebyelul Z, Ellisman MH, Huang PL, Tsien RY. Absence of cerebellar long-term depression in mice lacking neuronal nitric oxide synthase. Learning Memory 1997; 3: 169–177.

    Google Scholar 

  101. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994; 265: 1883–1885.

    PubMed  CAS  Google Scholar 

  102. Idecola C, Zhang F, Casey R, Nagayama M, Ross ME. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 1997; 17: 9157–9164.

    Google Scholar 

  103. Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -induced dopaminergic neurotoxicity. Proc Nat Acad Sci 1996; 93: 4565–4571.

    PubMed  CAS  Google Scholar 

  104. Schulz JB, Huang PL, Russell TM, Passov D, Fishman MC, Beal MF. Striatal malonate lesions are attenuated in neuronal nitric oxide synthase knockout mice. J Neurochem 1996; 67: 430–433.

    Article  PubMed  CAS  Google Scholar 

  105. Yang G, Zhang Y, Ross ME, Iadecola C. Attenuation of activityinduced increases in cerebellar blood flow in mice lacking neuronal nitric oxide synthase. Am J Physiol 2003; 285: H298-H304.

    CAS  Google Scholar 

  106. Wu W, Liuzzi FJ, Schinco FP, Depto AS, Li Y, Mong JA, Dawson TM, Snyder SH. Neuronal nitric oxide synthase is induced in spinal neurons by traumatic injury. Neuroscience 1994; 61: 719–726.

    PubMed  CAS  Google Scholar 

  107. Saitoh O, Courchesne E. Magnetic resonance imaging study of the brain in autism. Psychiatry Clin Neurosci 1998; 52 Suppl: S219-S222.

  108. Katsetos CD, Hyde TM, Herman MM. Neuropathology of the cerebellum in schizophrenia-an update: 1996 and future directions. Biol Psychiatry 1997; 42: 213–224.

    PubMed  CAS  Google Scholar 

  109. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos PA. Clinicopathological study of autism. Brain 1998; 121: 889–905.

    PubMed  Google Scholar 

  110. Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A. Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 2002; 22: 171–175.

    PubMed  Google Scholar 

  111. Kern JK. Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev 2003; 25: 377–382.

    PubMed  Google Scholar 

  112. Fatemi SH, Cuadra AE, El-Fakahany EE, Sidwell RW, Thuras P. Prenatal viral infection causes alterations in nNOS expression in developing mouse brains. Neuroreport 2000; 11: 1493–1496.

    PubMed  CAS  Google Scholar 

  113. D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374: 719–723.

    PubMed  CAS  Google Scholar 

  114. Caviness Jr. VS, Rakic P. Mechanisms of cortical development: a view from mutations in mice. Ann Rev Neurosci 1978; 1: 297–326.

    PubMed  Google Scholar 

  115. Mikoshiba K, Terada S, Takamatsu K, Shimai K, Tsukada Y. Histochemical and immunohistochemical studies of the cerebellum from the reeler mutant mouse. Dev Neurosci 1983; 6: 101–110.

    PubMed  Google Scholar 

  116. Fatemi SH, Stary JM, Egan EA. Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder. Cell Mol Neurobiol 2002; 22: 139–152.

    PubMed  CAS  Google Scholar 

  117. Fatemi SH. Reelin mutations in mouse and man: From reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry 2001; 6: 129–133.

    PubMed  CAS  Google Scholar 

  118. Ichimiya T, Okubo Y, Suhara T, Sudo Y. Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry 2001; 49: 20–27.

    PubMed  CAS  Google Scholar 

  119. Levitt JJ, McCarley RW, Nestor PG, Petrescu C, Donnino R, Hirayasu Y, Kikinis R, Jolesz FA, Shenton ME. Quantitative volumetric MRI study of the cerebellum and vermis in schizophrenia: clinical and cognitive correlates. Am J Psychiatry 1999; 156: 1105–1107.

    PubMed  CAS  Google Scholar 

  120. Loeber RT, Cintron CM, Yurgelun-Todd DA. Morphometry of individual cerebellar lobules in schizophrenia. Am J Psychiatry 2001; 158: 952–954.

    PubMed  CAS  Google Scholar 

  121. Tran KD, Smutzer GS, Doty RL, Arnold SE. Reduced Purkinje cell size in the cerebellar vermis of elderly patients with schizophrenia. Am J Psychiatry 1998; 155: 1288–1290.

    PubMed  CAS  Google Scholar 

  122. Andersen BB, Pakkenberg B. Stereological quantitation in cerebella from people with schizophrenia. Brit J Psychiatry 2003; 182: 354–361.

    Google Scholar 

  123. Bernstein HG, Krell D, Braunewell KH, Baumann B, Gundelfinger ED, Diekmann S, Danos P, Bogerts B. Increased number of nitric oxide synthase immunoreactive Purkinje cells and dentate nucleus neurons in schizophrenia. J Neurocytol 2001; 30: 661–670.

    PubMed  CAS  Google Scholar 

  124. Karson CN, Griffin WS, Mrak RE, Husain M, Dawson TM, Snyder SH, Moore NC, Sturner WQ. Nitric oxide synthase (NOS) in schizophrenia: increases in cerebellar vermis. Mol Chem Neuropath 1996; 27: 275–284.

    Article  CAS  Google Scholar 

  125. Tashiro H, Suzuki SO, Hitotsumatsu T, Iwaki T. An autopsy case of spinocerebellar ataxia type 6 with mental symptoms of schizophrenia and dementia. Clin Neuropath 1999; 18: 198–204.

    CAS  Google Scholar 

  126. Klockgether T, Evert B. Genes involved in hereditary ataxias. Trends Neurosci 1998; 21: 413–418.

    PubMed  CAS  Google Scholar 

  127. Ophoff RA, Terwindt GM, Frants RR, Ferrari MD. P/Q-type Ca2+ channel defects in migraine, ataxia and epilepsy. Trends Pharm Sci 1999; 19: 121–127.

    Google Scholar 

  128. Abbott LC, Jacobowitz DM. Development of calretinin-immunoreactive unipolar brush-like cells and an afferent pathway to the embryonic and early postnatal mouse cerebellum. Anat Embryol 1995; 191: 541–559.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise C. Abbott PhD, DVM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbott, L.C., Nahm, SS. Neuronal nitric oxide synthase expression in cerebellar mutant mice. Cerebellum 3, 141–151 (2004). https://doi.org/10.1080/14734220410031927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220410031927

Keywords

Navigation