Skip to main content

Advertisement

Log in

In vitro cultured neurons for molecular studies correlating apoptosis with events related to Alzheimer disease

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This short review analyses the possible molecular events linking a general program of death such as apoptosis to highly specific intracellular pathways involving the function and degradation of two proteins tau and amyloid precursor protein which in their aggregated state constitute the hallmark of Alzheimer disease. By surveying the recent studies carried out in ‘in vitro’ neuronal cultures with special emphasis to cerebellar granule neurons the apparent correlation between onset of apoptosis, tau cleavage with formation of potential toxic fragments, and activation of an amyloidogenic route are discussed. Within this framework, proteasomes seem to play a crucial role upstream of the proteolytic cascade involving calpain(s) and caspase(s) by contributing to tau and amyloid precursor protein-altered breakdown and consequent tendency to aggregation of their degradation fragments. Thus, apoptotic death due to altered supply of anti apoptotic agents, neurotrophic factors, deafferentiation or other causes, may constitute a major trigger of the onset of Alzheimer disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 1995; 373: 523–527.

    Article  PubMed  CAS  Google Scholar 

  2. Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P3011 tau transgenic mice induced by Abeta 42 fibrils. Science 2001; 293: 1491–1495.

    Article  PubMed  CAS  Google Scholar 

  3. Hsiao KK, Scott M, Foster D, Groth DF, DeArmond SJ, Prusiner SB. Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 1990; 250(4987): 1587–1590.

    Article  PubMed  CAS  Google Scholar 

  4. Gurney ME. Transgenic-mouse model of amyotrophic lateral sclerosis. N Engl J Med 1994; 331: 1721–1722.

    Article  PubMed  CAS  Google Scholar 

  5. Jellinger KA, Stadelmann C. Problems of cell death in neurodegeneration and Alzheimer’s Disease. J Alzheimer Dis 2001; 3: 31–40.

    CAS  Google Scholar 

  6. Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci 1998; 18: 2801–2807.

    PubMed  CAS  Google Scholar 

  7. Vincent I, Jicha G, Rosado M, Dickson DW. Aberrant expression of mitotic cdc2/cyclin Bl kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci 1997; 17: 3588–3598.

    PubMed  CAS  Google Scholar 

  8. Smale G, Nichols NR, Brady DR, Finch CE, Horton WE, Jr. Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 1995; 133: 225–230.

    Article  PubMed  CAS  Google Scholar 

  9. Bredesen DE. Neural apoptosis. Ann Neurol 1995; 38: 839–851.

    Article  PubMed  CAS  Google Scholar 

  10. Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci 2001; 21: 2661–2668.

    PubMed  CAS  Google Scholar 

  11. Borsello T, Di Luzio A, Ciotti MT, Calissano P, Galli C. Granule neuron DNA damage following deafferentation in adult rats cerebellar cortex: a lesion model. Neuroscience 2000; 95: 163–171.

    Article  PubMed  CAS  Google Scholar 

  12. D’Mello SR, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 1993; 90: 10989–10993.

    Article  PubMed  CAS  Google Scholar 

  13. Miller FD, Kaplan DR. Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 2001; 58: 1045–1053.

    Article  PubMed  CAS  Google Scholar 

  14. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001; 81: 741–766.

    PubMed  CAS  Google Scholar 

  15. Hirokawa N. Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr Opin Cell Biol 1994; 6: 74–81.

    Article  PubMed  CAS  Google Scholar 

  16. Scott MJ, Johnson GVW. Tau complexes with phospholipase C-7 situ. NeuroReport 1998; 9: 67–71.

    Google Scholar 

  17. Hwang SC, Deok-Young J, Yun Soo B, Hynshik Kim J, Rhee SG. Activation of phospholipase C7 by the concerted action of tau proteins and arachidonic acid. J Biol Chem 1996; 271: 18342–18349.

    Article  PubMed  CAS  Google Scholar 

  18. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989; 3: 519–526.

    Article  PubMed  CAS  Google Scholar 

  19. Himmler A, Drechsel D, Kirschner MW, Martin Jr, DW. Tau consists of a set of proteins with repeated C-terminal microtubule binding domains and variable N-terminal domains. Mol Cell Biol 1989; 9: 1381–1388.

    PubMed  CAS  Google Scholar 

  20. Lovestone S, Reynolds CH. The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 1997; 78: 309–324.

    Article  PubMed  CAS  Google Scholar 

  21. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal Phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986; 83: 4913–4917.

    Article  PubMed  CAS  Google Scholar 

  22. Wang JZ, Grundke-Iqbal I, Iqbal K. Glycosylation of microtubuleassociated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 1996; 8: 871–875.

    Article  Google Scholar 

  23. Ledesma MD, Bonay P, Colaco C, Avila J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 1994; 269: 21614–21619.

    PubMed  CAS  Google Scholar 

  24. Novak M, Kabat J, Wischick CM. Molecular charatcterization of the minimal protease resistant tau unit of Alzheimer’s disease paired helical filament. EMBO J 1993; 12: 365–370.

    PubMed  CAS  Google Scholar 

  25. Brion JP, Hanger DP, Bruce MT, Couck AM, Flament-Durand J, Anderton BH. Tau in Alzheimer neurofibrillary tangles. N- and C-terminal regions are differentially associated with paired helical filaments and the location of a putative abnormal phosphorylation site. Biochem J 1991; 273: 127–133.

    PubMed  CAS  Google Scholar 

  26. Alonso AD, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K. Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J Biol Chem 2001; 276: 37967–37973.

    Article  PubMed  CAS  Google Scholar 

  27. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 2001; 98: 6923–6928.

    Article  PubMed  CAS  Google Scholar 

  28. Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA 1997; 94: 298–303.

    Article  PubMed  CAS  Google Scholar 

  29. Abraha A, Ghoshal N, Gamblin TC, Cryns V, Berry RW, Kuret J, Binder LI. C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J Cell Sci 2000; 21: 3737–3745.

    Google Scholar 

  30. Takashima A, Murayama M, Yasutake K, Takahashi H, Yokoyama M, Ishiguro K. Involvement of cyclin dependent kinase5 activator p25 on tau phosphorylation in mouse brain. Neurosci Lett 2001; 306: 37–40.

    Article  PubMed  CAS  Google Scholar 

  31. Sperber BR, Leight S, Goedert M, Lee VM. Glycogen synthase kinase-3 beta phosphorylates tau protein at multiple sites in intact cells. Neurosci Lett 1995; 197: 149–153.

    Article  PubMed  CAS  Google Scholar 

  32. Davis PK, Johnson GV. The microtubule binding of Tau and high molecular weight Tau in apoptotic PC 12 cells is impaired because of altered phosphorylation. J Biol Chem 1999; 274: 35686–35692.

    Article  PubMed  CAS  Google Scholar 

  33. Lorio G, Avila J, Diaz-Nido J. Modifications of tau protein during neuronal cell death. J Alzheimers Dis 2001; 3: 563–575.

    PubMed  CAS  Google Scholar 

  34. Sindou P, Lesort M, Couratier P, Yardin C, Esclaire F, Hugon J. Glutamate increases tau phosphorylation in primary neuronal cultures from fetal rat cerebral cortex. Brain Res 1999; 646: 124–128.

    Article  Google Scholar 

  35. Couratier P, Lesort M, Sindou P, Esclaire F, Yardin C, Hugon J. Modifications of neuronal phosphorylated tau immunoreactivity induced by NMDA toxicity. Mol Chem Neuropathol 1996; 27: 259–273.

    Article  PubMed  CAS  Google Scholar 

  36. Ksiezak-Reding H, He D, Gordon-Krajcer W, Kress Y, Lee S, Dickson DW. Induction of Alzheimer-specific Tau epitope AT100 in apoptotic human fetal astrocytes. Cell Motil Cytoskeleton 2000; 47: 236–252.

    Article  PubMed  CAS  Google Scholar 

  37. Mookherjee P, Johnson GV. Tau phosphorylation during apoptosis of human SH-SY5Y neuroblastoma cells. Brain Res 2001; 921(1-2): 31–43.

    Article  PubMed  CAS  Google Scholar 

  38. Stoothoff WH, Johnson GV. Hyperosmotic stress-induced apoptosis and tau phosphorylation in human neuroblastoma cells. J Neurosci Res 2001; 65: 573–582.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang J, Johnson GV. Tau protein is hyperphosphorylated in a sitespecific manner in apoptotic neuronal PC12 cells J Neurochem 2000; 75: 2346–2357.

    Article  PubMed  CAS  Google Scholar 

  40. Allen JW, Eldadah BA, Faden AI. Beta-amyloid-induced apoptosis of cerebellar granule cells and cortical neurons: exacerbation by selective inhibition of group I metabotropic glutamate receptors. Neuropharmacology 1999; 38: 1243–1252.

    Article  PubMed  CAS  Google Scholar 

  41. Alvarez A, Munoz JP, Maccioni RB. Cdk5-p35 stable complex is involved in the beta-amyloid-induced deregulation of Cdk5 activity in hippocampal neurons. Exp Cell Res 2001; 264: 266–274.

    Article  PubMed  CAS  Google Scholar 

  42. Canu N, Dus L, Barbato C, Ciotti MT, Brancolini C, Rinaldi AM, Novak M, Cattaneo A, Bradbury A, Calissano P. Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis. J Neurosci 1998; 18: 7061–7074.

    PubMed  CAS  Google Scholar 

  43. Mills JC, Lee VM, Pittman RN. Activation of a PP2A-like phosphatase and dephosphorylation of tau protein characterize onset of the execution phase of apoptosis. J Cell Sci 1998; 5: 625–636.

    Google Scholar 

  44. Yardin C, Terro F, Esclaire F, Rigaud M, Hugon J. Brefeldin Ainduced apoptosis is expressed in rat neurons with dephosphorylated tau protein. Neurosci Lett 1998; 250: 1–4.

    Article  PubMed  CAS  Google Scholar 

  45. Lesort M, Blanchard C, Yardin C, Esclaire F, Hugon J. Cultured neurons expressing phosphorylated tau are more resistant to apoptosis induced by NMDA or serum deprivation. Brain Res Mol Brain Res 1997; 45: 127–132.

    Article  PubMed  CAS  Google Scholar 

  46. Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T. The levels of cdk5 and p35 proteins and tau phosphorylation are reduced during neuronal apoptosis. Biochem Biophys Res Commun 2001; 280: 998–1002.

    Article  PubMed  CAS  Google Scholar 

  47. Krishnamurthy PK, Mays JL, Bijur GN, Johnson GV. Transient oxidative stress in SH-SY5Y human neuroblastoma cells results in caspase dependent and independent cell death and tau proteolysis. J Neurosci Res2000; 61: 515–523.

    Article  PubMed  CAS  Google Scholar 

  48. Chung CW, Song YH, Kim IK, Yoon WJ, Ryu BR, Jo DG, Woo HN, Kwon YK, Kim HH, Gwag BJ, Mook-Jung IH, Jung YK. Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol Dis 2001; 8: 162–172.

    Article  PubMed  CAS  Google Scholar 

  49. Krishnamurthy PK, Mays JL, Bijur GN, Johnson GV. Transient oxidative stress in SH-SY5Y human neuroblastoma cells results in caspase dependent and independent cell death and tau proteolysis. J Neurosci Res 2000; 61: 515–523.

    Article  PubMed  CAS  Google Scholar 

  50. Fasulo L, Ugolini G, Visintin M, Bradbury A, Brancolini C, Verzillo V, Novak M, Cattaneo A. The neuronal microtubuleassociated protein tau is a substrate for caspase-3 and an effector of apoptosis. J Neurochem 2000; 75: 624–633.

    Article  PubMed  CAS  Google Scholar 

  51. Canu N, Barbato C, Ciotti MT, Serafino A, Dus L, Calissano P. Proteasome involvement and accumulation of ubiquitinated proteins in cerebellar granule neurons undergoing apoptosis. J Neurosci 2000; 20: 589–599.

    PubMed  CAS  Google Scholar 

  52. Gorman AM, Bonfoco E, Zhivotovsky B, Orrenius S, Ceccatelli S. Cytochrome c release and caspase-3 activation during colchicineinduced apoptosis of cerebellar granule cells. Eur J Neurosci 1999; 11: 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  53. Galli C, Piccini A, Ciotti MT, Castellani L, Calissano P, Zaccheo D, Tabaton M. Increased amyloidogenic secretion in cerebellar granule cells undergoing apoptosis. Proc Natl Acad Sci USA 1998; 95: 1247–1252.

    Article  PubMed  CAS  Google Scholar 

  54. LeBlanc A. Increased production of 4 kDa amyloid beta peptide in serum deprived human primary neuron cultures: possible involvement of apoptosis J. Neurosci 1995; 15: 7837–7846.

    PubMed  CAS  Google Scholar 

  55. Piccini A, Ciotti MT, Vitolo OV, Calissano P, Tabaton M, Galli C. Endogenous APP derivatives oppositely modulate apoptosis through an autocrine loop. Neuroreport2000; 11: 1375–1379.

    Article  PubMed  CAS  Google Scholar 

  56. De Berardinis M, Ciotti MT, Amadoro G, Galli C, Calissano P. Transfer of the apoptotic message in sister cultures of cerebellar neurons. Neuroreport 2001; 12: 2137–2140.

    Article  Google Scholar 

  57. Amadoro G, Sacco A, Barbato C, Ciotti MT, Calissano P, Canu N. Role of tau integrity on neuronal survival. FENS abs 2002: 149. 1.

    Google Scholar 

  58. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, Le Blanc A, Smith D, Rigby M, Sherman MS, Clarke EE, Zheng H, Van der Ploeg LH, Ruffolo SC, Thornberry NA, Xanthoudakis S, Zamboni RJ, Roy S, Nicholson DW. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic Aβ peptide formation. Cell 1999; 97: 395–406.

    Article  PubMed  CAS  Google Scholar 

  59. Smith MA, Drew KL, Nunomura A, Takeda A, Hirai K, Zhu X, Atwood CS, Raina AK, Rottkamp CA, Sayre LM, Friedland RP, Perry G. Amyloid-beta, tau alterations and mitochondrial dysfunction in Alzheimer disease: the chickens or the eggs? Neurochem Int 2002; 40: 527–231.

    Article  PubMed  CAS  Google Scholar 

  60. Xia W. Amyloid metabolism and secretases in Alzheimer’s disease. Curr Neurol Neurosci Rep 2001; 5: 422–427.

    Article  Google Scholar 

  61. Milligan CE. Caspase cleavage of APP results in a cytotoxic proteolytic peptide. Nat Med 2000; 6: 385–386.

    Article  PubMed  CAS  Google Scholar 

  62. Troy CM, Rabacchi SA, Xu Z, Maroney AC, Connors TJ, Shelanski ML, Greene LA. beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J Neurochem 2001; 77: 157–164.

    Article  PubMed  CAS  Google Scholar 

  63. Galvan V, Chen S, Lu D, Logvinova A, Goldsmith P, Koo EH, Bredesen DE. Caspase cleavage of members of the amyloid precursor family of proteins. J Neurochem 2002; 82: 283–294.

    Article  PubMed  CAS  Google Scholar 

  64. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382: 685–691.

    Article  PubMed  CAS  Google Scholar 

  65. Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, Staufenbiel M, Mautino J, Vigo FS, Sommer B, Yankner BA. Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat Neurosci 2000; 3: 460–464.

    Article  PubMed  CAS  Google Scholar 

  66. Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitinproteasome system by protein aggregation. Science 2001; 292: 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  67. Master E, Chan SL, Ali-Khan Z. Ubiquitin (Ub) interacts noncovalently with Alzheimer amyloid precursor protein (betaPP): isolation of Ub-betaPP conjugates from brain extracts. Neuroreport 1997; 8: 2781–2786.

    Article  PubMed  CAS  Google Scholar 

  68. Marambaud P, Rieunier F, Wilk S, Martinez J, Checler F. Contribution of the proteasome to the alpha-secretase pathway in Alzheimer’s disease. Adv Exp Med Biol 1997; 421: 267–272.

    PubMed  CAS  Google Scholar 

  69. Lowe J, Mayer RJ, Landon M. Ubiquitin in neurodegenerative diseases. Brain Pathol 1993; 3: 55–65.

    Article  PubMed  CAS  Google Scholar 

  70. Glickman MH, Maytal V. Regulating the 26S proteasome. Curr Top Microbiol Immunol. 2002; 268: 43–72.

    PubMed  CAS  Google Scholar 

  71. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 2000; 288: 874–877.

    Article  PubMed  CAS  Google Scholar 

  72. Mimnaugh EG, Kayastha G, McGovern NB, Hwang SG, Marcu MG, Trepel J, Cai SY, Marchesi VT, Neckers L. Caspasedependent deubiquitination of monoubiquitinated nucleosomal histone H2a induced by diverse apoptogenic stimuli. Cell Death Differ 2001; 8: 1182–1196.

    Article  PubMed  CAS  Google Scholar 

  73. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH. The ubiquitin pathway in Parkinson’s disease. Nature 1998; 395: 451–452.

    Article  PubMed  CAS  Google Scholar 

  74. Pasquini LA, Besio Moreno M, Adamo AM, Pasquini JM, Soto EF. Lactacystin, a specific inhibitor of the proteasome, induces apoptosis and activates caspase-3 in cultured cerebellar granule cells. J Neurosci Res 2000; 59: 601–611.

    Article  PubMed  CAS  Google Scholar 

  75. Qiu JH, Asai A, Chi S, Saito N, Hamada H, Kirino T. Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured cortical neurons. J Neurosci 2000; 20: 259–265.

    PubMed  CAS  Google Scholar 

  76. Wojcik C. Regulation of apoptosis by the ubiquitin and proteasome pathway. J Cell Mol Med 2002; 6: 25–48.

    Article  PubMed  CAS  Google Scholar 

  77. Piccioli P, Porcile C, Stanzione S, Bisaglia M, Bajetto A, Bonavia R, Florio T, Schettini G. Inhibition of nuclear factor-kappaB activation induces apoptosis in cerebellar granule cells. J Neurosci Res 2001; 66: 1064–1073.

    Article  PubMed  CAS  Google Scholar 

  78. Checler F, Alves da Costa C, Ancolio K, Chevallier N, Lopez-Perez E, Marambaud P. Role of proteasome in Alzheimer’s disease. Biochim Biophys Acta 2000; 1502: 133–138.

    PubMed  CAS  Google Scholar 

  79. Canu N, Serafino AL, Amadoro G, Ciotti MT, Barbato C, Calissano P. Involvement of autophagic-lysosomal compartment in cerebellar granule neurons undergoing apoptosis. FENS abs2002: 149. 6.

    Google Scholar 

  80. Bobba A, Canu N, Atlante A, Petragallo V, Calissano P, Marra E. Proteasome inhibitors prevent cytochrome c release during apoptosis but not in excitotoxic death of cerebellar granule neurons. FEBS Lett 2002; 51: 8–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Canu MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canu, N., Calissano, P. In vitro cultured neurons for molecular studies correlating apoptosis with events related to Alzheimer disease. Cerebellum 2, 270–278 (2003). https://doi.org/10.1080/14734220310004289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310004289

Keywords

Navigation