Skip to main content
Log in

Coupling between cerebellar hemispheres: Behavioural, anatomic, and functional data

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Although the cerebellum has been related to emotional, cognitive, and sensory processes, its outstanding significance for motor behaviour has attracted a vast variety of studies. Specifically, the role of cerebellar activity for appropriate movement timing has been investigated intensively. Behavioural studies, particularly of patients following cerebellar lesions, gave rise to the hypothesis that each hand is controlled by separate timing mechanisms most likely localized within lateral portions of each cerebellar hemisphere. Reduced timing variability during simultaneous bimanual tasks implies that both timing signals are integrated prior to movement execution, probably by information transfer between both cerebellar hemispheres. However, this raises the question for functional and anatomic fundamentals of such an integration process. The present article reviews behavioural, functional, and anatomic data to shed light on possible interactions between both cerebellar hemispheres during the execution of timed motor behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen BB, Korbo L, Pakkenberg B. A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol. 1992;326:549–60.

    Article  PubMed  CAS  Google Scholar 

  2. Braitenberg V, Atwood RP. Morphological observations on the cerebellar cortex. J Comp Neurol. 1958;109:1–33.

    Article  PubMed  CAS  Google Scholar 

  3. Larsell O. The cerebellum: A review and interpretation. Arch Neurol Psychiatry. 1937;38:581–607.

    Google Scholar 

  4. Middleton FA, Strick PL. Cerebellar output channels. Int Rev Neurobiol. 1997;41:61–82.

    PubMed  CAS  Google Scholar 

  5. Eccles JC, Ito M, Szentagothai J. The Cerebellum as neuronal machine. New York: Springer-Verlag, 1967.

    Google Scholar 

  6. Bosco G, Poppele RE. Modulation of dorsal spinocerebellar responses to limb movement. II. Effect of sensory input. J Neurophysiol. 2003;90:3372–83.

    Article  PubMed  CAS  Google Scholar 

  7. Bosco G, Poppele RE. Proprioception from a spinocerebellar perspective. Physiol Rev. 2001;81:539–68.

    PubMed  CAS  Google Scholar 

  8. Welsh JP, Llin’as R. Some organizing principles for the control of movement based on olivocerebellar physiology. Amsterdam: Elesevier Science, 1997.

    Google Scholar 

  9. Ramnani N, Toni I, Passingham RE, Haggard P. The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuroimage. 2001;14:899–911.

    Article  PubMed  CAS  Google Scholar 

  10. Courchesne E, Allen G. Prediction and preparation, fundamental functions of the cerebellum. Learn Mem. 1997;4: 1–35.

    Article  PubMed  CAS  Google Scholar 

  11. Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.

    Article  PubMed  CAS  Google Scholar 

  12. Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127:561–74.

    Article  PubMed  Google Scholar 

  13. Franz EA, Ivry RB, Helmuth LL. Reduced timing variability in patients with unilateral cerebellar lesions during bimanual movements. J Cog Neurosci. 1996;8:107–18.

    Article  Google Scholar 

  14. Serrien DJ, Wiesendanger M. Temporal control of a bimanual task in patients with cerebellar dysfunction. Neuropsychologia. 2000;38:558–65.

    Article  PubMed  CAS  Google Scholar 

  15. Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978:302–17.

    Article  PubMed  Google Scholar 

  16. Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science. 2003;300:1437–9.

    Article  PubMed  CAS  Google Scholar 

  17. Spencer RM, Ivry RB, Zelaznik HN. Role of the cerebellum in movements: control of timing or movement transitions? Exp Brain Res. 2005;161:383–96.

    Article  PubMed  Google Scholar 

  18. Ivry RB. The representation of temporal information in perception and motor control. Curr Opin Neurobiol. 1996;6:851–7.

    Article  PubMed  CAS  Google Scholar 

  19. Diedrichsen J, Hazeltine E, Ivry R, Kennerley S, Spencer B. Comparing continuous and discrete movements with fMRI. Ann N Y Acad Sci. 2002;978:509–10.

    Article  PubMed  Google Scholar 

  20. Wing AM. Voluntary timing and brain function: an information processing approach. Brain Cogn. 2002;48:7–30.

    Article  PubMed  Google Scholar 

  21. Vorberg D, Wing A. Modelling variability and dependence in timing. In: Heuer H, Keele SW, editors. Handbook of perception and action, Vol. 2: Motor skills. London: Academic Press, 1996:181–262.

    Google Scholar 

  22. Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73:167–80.

    Article  PubMed  CAS  Google Scholar 

  23. Theoret H, Haque J, Pascual-Leone A. Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett. 2001;306:29–32.

    Article  PubMed  CAS  Google Scholar 

  24. Keating JG, Thach WT. Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J Neurophysiol. 1995;73:1329–40.

    PubMed  CAS  Google Scholar 

  25. Keating JG, Thach WT. No clock signal in the discharge of neurons in the deep cerebellar nuclei. J Neurophysiol. 1997;77:2232–4.

    PubMed  CAS  Google Scholar 

  26. Treisman M, Faulkner A, Naish PL. On the relation between time perception and the timing of motor action: evidence for a temporal oscillator controlling the timing of movement. Q J Exp Psychol A. 1992;45:235–63.

    PubMed  CAS  Google Scholar 

  27. Welsh JP, Lang EJ, Suglhara I, Llinas R. Dynamic organization of motor control within the olivocerebellar system. Nature. 1995;374:453–7.

    Article  PubMed  CAS  Google Scholar 

  28. Llinas R, Sasaki K. The functional organization of the olivo-cerebellar system as examined by multiple purkinje cell recordings. Eur J Neurosci. 1989;1:587–602.

    Article  PubMed  Google Scholar 

  29. Sadato N, Campbell G, Ibanez V, Deiber M, Hallett M. Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci. 1996;16:2691–700.

    PubMed  CAS  Google Scholar 

  30. Rijntjes M, Dettmers C, Buchel C, Kiebel S, Frackowiak RS, Weiller C. A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci. 1999;19:8043–8.

    PubMed  CAS  Google Scholar 

  31. Rao S, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17:5528–35.

    PubMed  CAS  Google Scholar 

  32. Lutz K, Specht K, Shah NJ, Jäncke L. Tapping movements according to regular and irregular visual timing signals investigated with fMRI. Neuroreport. 2000;11:1301–06.

    PubMed  CAS  Google Scholar 

  33. Moritz CH, Haughton VM, Cordes D, Quigley M, Meyerand ME. Whole-brain functional MR imaging activation from a finger-tapping task examined with independent component analysis. Am J Neuroradiol. 2000;21:1629–35.

    PubMed  CAS  Google Scholar 

  34. Singer W. Neuronal synchrony: a versatile code for the definition of relations. Neuron. 1999;24:49–65.

    Article  PubMed  CAS  Google Scholar 

  35. Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. Nat Neurosci Rev. 2005;6:285–96.

    Article  CAS  Google Scholar 

  36. Knyazeva MG, Innocenti GM. EEG coherence studies in the normal brain and after early-onset cortical pathologies. Brain Res Brain Res Rev. 2001;36:119–28.

    Article  PubMed  CAS  Google Scholar 

  37. Gerloff C, Andres FG. Bimanual coordination and interhemispheric interaction. Acta Psychol (Amst). 2002;110:161–86.

    Article  Google Scholar 

  38. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14.

    PubMed  CAS  Google Scholar 

  39. Pollok B, Sudmeyer M, Gross J, Schnitzler A. The oscillatory network of simple repetitive bimanual movements. Brain Res Cogn Brain Res. 2005.

  40. Pollok B, Gross J, Müller K, Aschersleben G, Schnitzler A. The cerebral oscillatory network associated with auditorily paced finger movements. Neuroimage. 2005;24:646–55.

    Article  PubMed  Google Scholar 

  41. Butz M, Timmermann L, Gross J, et al. Oscillatory coupling in writing and writers cramp. J Physiol (Paris). 2006;99:14–20.

    Article  Google Scholar 

  42. Timmermann L, Gross J, Dirks M, Volkmann J, Freund H-J, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126:199–212.

    Article  PubMed  Google Scholar 

  43. Gross J, Timmermann L, Kujala J, et al. The neural basis of intermittent motor control in humans. Proc Natl Acad Sci USA. 2002;99:2299–302.

    Article  PubMed  CAS  Google Scholar 

  44. Horne MK, Butler EG. The role of the cerebello-thalamocortical pathway in skilled movement. Prog Neurobiol. 1995;46:199–213.

    Article  PubMed  CAS  Google Scholar 

  45. Pollok B, Gross J, Dirks M, Timmeramnn L, Schnitzler A. The cerebral oscillatory network of voluntary tremor. J Physiol. 2004;554:871–8.

    Article  PubMed  CAS  Google Scholar 

  46. Saito M. Experimentelle Untersuchungen über die inneren Verbindungen der Kleinhirnrinde und deren Beziehungen zu pons und medulla oblongata. [Experimental investigations concerning the inner connections of the cerebellar cortex and their relationship to pons and oblongate medula] In: Obersteiner H, editor. Arbeiten aus dem neurologischen Institute an der Universität Wien. Leipzig und Wien: Franz Deuticke, 1922:74–106.

    Google Scholar 

  47. Berry M, Ibrahim M, Carlile J, Ruge F, Duncan A, Butt AM. Axon-glial relationships in the anterior medullary velum of the adult rat. J Neurocytol. 1995;24:965–83.

    Article  PubMed  CAS  Google Scholar 

  48. Rosina A, Provini L. Pontocerebellar system linking the two hemispheres by intracerebellar branching. Brain Res. 1984;296:365–9.

    Article  PubMed  CAS  Google Scholar 

  49. Mihailoff GA. Intra- and interhemispheric collateral branching in the rat pontocerebellar system, a fluorescence doublelabel study. Neuroscience. 1983;10:141–60.

    Article  PubMed  CAS  Google Scholar 

  50. Aschersleben G. Temporal control of movements in sensorimotor synchronization. Brain Cogn. 2002;48:66–79.

    Article  PubMed  Google Scholar 

  51. Helmuth LL, Ivry RB. When two hands are better than one: reduced timing variability during bimanual movements. J Exp Psychol. 1996;22:278–93.

    CAS  Google Scholar 

  52. Drewing K, Hennings M, Ascherleben G. The contribution of tactile reafference to temporal regularity during bimanual finger tapping. Psych Res. 2002;66:60–70.

    Article  Google Scholar 

  53. Mangels JA, Ivry RB, Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Brain Res Cogn Brain Res. 1998;7:15–39.

    Article  PubMed  CAS  Google Scholar 

  54. Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage. 2005;28:39–48.

    Article  PubMed  Google Scholar 

  55. Gross J, Timmermann L, Kujala J, Salmelin R, Schnitzler A. Properties of MEG tomographic maps obtained with spatial filtering. Neuroimage. 2003;19:1329–36.

    Article  PubMed  CAS  Google Scholar 

  56. Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. TINS. 1997;20.

  57. Gastaut H. [Electrocorticographic study of the reactivity of rolandic rhythm]. Rev Neurol (Paris). 1952;87:176–82.

    CAS  Google Scholar 

  58. Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain. 1998;121:1513–31.

    Article  PubMed  Google Scholar 

  59. Jueptner M, Weiller C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 1998;121:1437–49.

    Article  PubMed  Google Scholar 

  60. Miall RC, Christensen LO. The effect of rTMS over the cerebellum in normal human volunteers on peg-board movement performance. Neurosci Lett. 2004;371:185–9.

    Article  PubMed  CAS  Google Scholar 

  61. Hartmann MJ, Bower JM. Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol. 1998;80:1598–604.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Pollok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollok, B., Butz, M., Gross, J. et al. Coupling between cerebellar hemispheres: Behavioural, anatomic, and functional data. Cerebellum 5, 212–219 (2006). https://doi.org/10.1080/14734220600621294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220600621294

Key words

Navigation