Skip to main content

Advertisement

Log in

Region at amino acids 164 to 303 of the rabies virus glycoprotein plays an important role in pathogenicity for adult mice

  • Short Communication
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The authors have previously reported that the glycoprotein of the pathogenic Nishigahara strain of rabies virus is required to lethality for adult mice. A cluster region of amino acid substitutions exists at the positions 164 to 303 on the glycoprotein between avirulent and virulent strains. In this study, the authors generated a chimeric strain having the region at the positions 164 to 303 of the glycoprotein derived from the pathogenic Nishigahara strain in the genetic background of the avirulent RC-HL strain. The chimeric R(G 164–303) strain restores the lethality for adult mice. This result clearly shows that the region at the position 164 to 303 of glycoprotein plays an important role in the lethality for adult mice. Moreover, the authors observed that the lethality for adult mice correlated well with the viral growth in a brain but not with the pH-dependent fusion activity in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Baer GM, Shaddock JH, Quirion R, Dam TV, Lentz TL (1990). Rabies susceptibility and acetylcholine receptor. Lancet 335: 664–665.

    Article  CAS  PubMed  Google Scholar 

  • Desmezieres E, Maillard AP, Gaudin Y, Tordo N, Perrin P (2003). Differential stability and fusion activity of Lyssavirus glycoprotein trimers. Virus Res 91: 181–187.

    Article  CAS  PubMed  Google Scholar 

  • Diallo A (1986). Avirulent mutants of the rabies virus: change in site III of the glycoprotein. Ann Rech Vet 17: 3–6.

    CAS  PubMed  Google Scholar 

  • Dietzschold B, Wiktor TJ, Trojanowski JQ, Macfarlan RI, Wunner WH, Torres-Anjel MJ, Koprowski H (1985). Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J Virol 56: 12–18.

    CAS  PubMed  Google Scholar 

  • Dietzschold B, Wunner WH, Wiktor TJ, Lopes AD, Lafon M, Smith CL, Koprowski H (1983). Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci U S A 80: 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Durrer P, Gaudin Y, Ruigrok RW, Graf R, Brunner J (1995). Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J Biol Chem 270: 17575–17581.

    Article  CAS  PubMed  Google Scholar 

  • Galelli A, Baloul L, Lafon M (2000). Abortive rabies virus central nervous infection is controlled by T lymphocyte local recruitment and induction of apoptosis. J Neuro-Virol 6: 359–372.

    CAS  Google Scholar 

  • Gaudin Y, Tuffereau C, Durrer P, Brunner J, Flamand A, Ruigrok R (1999). Rabies virus-induced membrane fusion. Mol Membr Biol 16: 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Goto H, Minamoto N, Ito H, Sugiyama M, Kinjo T, Mannen K, Mifune K, Kawai A (1994). Nucleotide sequence of the nucleoprotein gene of the RC.HL strain of rabies virus, a seed strain used for animal vaccine production in Japan. Virus Genes 8: 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Hooper DC, Morimoto K, Bette M, Weihe E, Koprowski H, Dietzschold B (1998). Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system. J Virol 72: 3711–3719.

    CAS  PubMed  Google Scholar 

  • Ito H, Minamoto N, Watanabe T, Goto H, Rong LT, Sugiyama M, Kinjo T, Mannen K, Mifune K, Konobe T, et al (1994). A unique mutation of glycoprotein gene of the attenuated RC-HL strain of rabies virus, a seed virus used for production of animal vaccine in Japan. Microbiol Immunol 38: 479–482.

    CAS  PubMed  Google Scholar 

  • Ito N, Kakemizu M, Ito KA, Yamamoto A, Yoshida Y, Sugiyama M, Minamoto N (2001a). A comparison of complete genome sequences of the attenuated RC-HL strain of rabies virus used for production of animal vaccine in Japan, and the parental Nishigahara strain. Microbiol Immunol 45: 51–58.

    CAS  PubMed  Google Scholar 

  • Ito N, Takayama M, Yamada K, Sugiyama M, Minamoto N (2001b). Rescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein gene is associated with virulence for adult mice. J Virol 75: 9121–9128.

    Article  CAS  PubMed  Google Scholar 

  • Jackson AC (2002). Pathogenesis. In: Rabies. Wunner WH, Jackson AC (eds). San Diego: Academic Press, pp 245–282.

    Google Scholar 

  • Lafon M (2002). Immunology. In: Rabies. Wunner WH, Jackson AC (eds). San Diego: Academic Press, pp 351–369.

    Google Scholar 

  • Lentz TL, Burrage TG, Smith AL, Crick J, Tignor GH (1982). Is the acetylcholine receptor a rabies virus receptor? Science 215: 182–184.

    Article  CAS  PubMed  Google Scholar 

  • Lewis P, Fu Y, Lentz TL (2000). Rabies virus entry at the neuromuscular junction in nerve-muscle cocultures. Muscle Nerve 23: 720–730.

    Article  CAS  PubMed  Google Scholar 

  • Marcovistz R, Leal EC, Matos DC, Tsiang H (1994). Interferon production and immune response induction in apathogenic rabies virus-infected mice. Acta Virol 38: 193–197.

    CAS  PubMed  Google Scholar 

  • Mebatsion T (2001). Extensive attenuation of rabies virus by simultaneously modifying the dynein light chain binding site in the P protein and replacing Arg333 in the G protein. J Virol 75: 11496–11502.

    Article  CAS  PubMed  Google Scholar 

  • Minamoto N, Tanaka H, Hishida M, Goto H, Ito H, Naruse S, Yamamoto K, Sugiyama M, Kinjo T, Mannen K, et al (1994). Linear and conformation-dependent antigenic sites on the nucleoprotein of rabies virus. Microbiol Immunol 38: 449–455.

    CAS  PubMed  Google Scholar 

  • Montano-Hirose JA, Lafage M, Weber P, Badrane H, Tordo N, Lafon M (1993). Protective activity of a murine monoclonal antibody against European bat lyssavirus 1 (EBL1) infection in mice. Vaccine 11: 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto K, Hooper DC, Spitsin S, Koprowski H, Dietzschold B (1999). Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol 73: 510–518.

    CAS  PubMed  Google Scholar 

  • Morimoto K, McGettigan JP, Foley HD, Hooper DC, Dietzschold B, Schnell MJ (2001). Genetic engineering of live rabies vaccines. Vaccine 19: 3543–3551.

    Article  CAS  PubMed  Google Scholar 

  • Perry LL, Lodmell DL (1991). Role of CD4+ and CD8+ T cells in murine resistance to street rabies virus. J Virol 65: 3429–3434.

    CAS  PubMed  Google Scholar 

  • Prehaud C, Coulon P, LaFay F, Thiers C, Flamand A (1988). Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J Virol 62: 1–7.

    CAS  PubMed  Google Scholar 

  • Reed LJ, Müench H (1938). A simple method of estimating fifty percent end points. Am J Hyg 27: 493–497.

    Google Scholar 

  • Seif I, Coulon P, Rollin PE, Flamand A (1985). Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J Virol 53: 926–934.

    CAS  PubMed  Google Scholar 

  • Smith JS (1981). Mouse model for abortive rabies infection of the central nervous system. Infect Immun 31: 297–308.

    CAS  PubMed  Google Scholar 

  • Smith JS, McCelland CL, Reid FL, Baer GM (1982). Dual role of the immune response in street rabiesvirus infection of mice. Infect Immun 35: 213–221.

    CAS  PubMed  Google Scholar 

  • Sugamata M, Miyazawa M, Mori S, Spangrude GJ, Ewalt LC, Lodmell DL (1992). Paralysis of street rabies virus-infected mice is dependent on T lymphocytes. J Virol 66: 1252–1260.

    CAS  PubMed  Google Scholar 

  • Theerasurakarn S, Ubol S (1998). Apoptosis induction in brain during the fixed strain of rabies virus infection correlates with onset and severity of illness. J Neuro Virol 4: 407–414.

    CAS  Google Scholar 

  • Tordo N, Poch O, Ermine A, Keith G, Rougeon F (1986). Walking along the rabies genome: Is the large G-L intergenic region a remnant gene? Proc Natl Acad Sci U S A 83: 3914–3918.

    Article  CAS  PubMed  Google Scholar 

  • Tuffereau C, Leblois H, Benejean J, Coulon P, Lafay F, Flamand A (1989). Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology 172: 206–212.

    Article  CAS  PubMed  Google Scholar 

  • Ubol S, Sukwattanapan C, Maneerat Y (2001). Inducible nitric oxide synthase inhibition delays death of rabies virus-infected mice. J Med Microbiol 50: 238–242.

    CAS  PubMed  Google Scholar 

  • Weiland F, Cox JH, Meyer S, Dahme E, Reddehase MJ (1992). Rabies virus neuritic paralysis: immunopatho-genesis of nonfatal paralytic rabies. J Virol 66: 5096–5099.

    CAS  PubMed  Google Scholar 

  • Yan X, Mohankumar PS, Dietzschold B, Schnell MJ, Fu ZF (2002). The rabies virus glycoprotein determines the distribution of different rabies virus strains in the brain. J NeuroVirol 8: 345–352.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Sugiyama.

Additional information

This study was supported in part by Grants-in-Aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (nos. 13556054 and 14656123).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takayama-Ito, M., Ito, N., Yamada, K. et al. Region at amino acids 164 to 303 of the rabies virus glycoprotein plays an important role in pathogenicity for adult mice. Journal of NeuroVirology 10, 131–135 (2004). https://doi.org/10.1080/13550280490279799

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280490279799

Keywords

Navigation