Skip to main content

Advertisement

Log in

Changes in APP, PS1 and other factors related to Alzheimer’s disease pathophysiology after trimethyltin-induced brain lesion in the rat

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Trimethyltin (TMT) chloride induces limbic system neurodegeneration, resulting in behavioral alterations including cognitive deficits. Different factors related to Alzheimer’s disease (AD) were studied after TMT lesion in Sprague-Dawley rats. The expression of amyloid precursor protein (APP) containing 695 amino acids (APP695), APP containing the Kuniz protease inhibitor domain (APP-KPI), presenilin 1 (PS1), c-fos and IL-1β was investigated at different timepoints after a single TMT injection (7 mg/kg i.p.) using in situ hybridization and immunohistochemistry.

After the TMT treatment, extensive degeneration of pyramidal neurons was observed in the CA3 region of the hippocampus, concomitant with neurodegeneration in the outer layer of the CA1 region and layer II of enterhinal and piriform cortex. The affected regions showed abundant condensed eosinophilic and TUNEL-positive neuronal cells, that were apparent at day 4 after TMT, increasing to day 7 and subsequently disappearing. In the affected regions the levels of APP695 mRNA gradually declined with time after the TMT injection. While there was no apparent alteration in the overall expression of APP-KPI or PS1 mRNA, detailed analysis of the CA3c region showed that the mRNA expression shifted from neurons to glial cells. Three days after TMT, neurons in the piriform cortex, the CA3 region and DG expressed high levels of c-fos mRNA that slowly declined to become normalized when analyzed at day 28. At day 7 after TMT a few distinct IL-1β mRNA expressing glial cells were observed in the CA3c region.

Thus, TMT exposure leads to alterations in the expression of APP, APP-KPI, PS1, c-fos and IL-1β in the limbic system. These findings suggest that TMT lesions, not only share certain key features of AD symptomatology and regional neurodegeneration, but also induce effects on important factors related to the pathophysiology of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrous, D.N., Rodriguez, J., le Moal, M., Moser, P.C. and Barneoud, P. (1999) “Effects of mild traumatic brain injury on immunoreactivity for the inducible transcription factors c-Fos, c-Jun, JunB, and Krox-24 in cerebral regions associated with conditioned fear responding,” Brain Res. 826, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Aldridge, W.N., Street, B.W. and Skilleter, D.N. (1977) “Oxidative phosphorylation. Halide-dependent and halide-independent effects of triorganotin and trioganolead compounds on mitochondrial functions,” Biochem. J. 168, 353–364.

    PubMed  CAS  Google Scholar 

  • Ali, S.F., Slikker, Jr., W., Newport, G.D. and Goad, P.T. (1986) “Cholinergic and dopaminergic alterations in the mouse central nervous system following acute trimethyltin exposure,” Acta Pharmacol. Toxicol. 59, 179–188.

    CAS  Google Scholar 

  • Anderson, V.E., Hajimohammadreza, I., Gallo, J.M., Anderton, B.H., Uney, J., Brown, A.W., Nolan, C.C., Cavanagh, J.B. and Leigh, P.N. (1992) “Ubiquitin, PGP 9.5 and dense body formation in trimethyltin intoxication: differential neuronal responses to chemically induced cell damage,” Neuropathol. Appl. Neurobiol. 18, 360–375.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, H., Luthman, J., Lindqvist, E. and Olson, L. (1995) “Time-course of trimethyltin effects on the monoaminergic systems of the rat brain,” Neurotoxicology 16, 201–210.

    PubMed  CAS  Google Scholar 

  • Andersson, H., Luthman, J., Wetmore, C., Lindqvisit, E. and Olson, L. (1997) “Trimethyltin exposure in the rat induces delayed changes in brain-derived neurotrophic factor, fos and heat shock protein 70,” Neurotoxicology 18, 147–160.

    PubMed  CAS  Google Scholar 

  • Beal, M.F. (1995) “Mitochondrial Dysfunction and Oxidative Damage in Neurodegenerative Diseases” (Springer-Verlag, New York), pp 89–96.

    Google Scholar 

  • Bouldin, T.W., Goines, N.D., Bagnell, C.R. and Krigman, M.R. (1981) “Pathogenesis of trimethyltin neuronal toxicity: ultrastructural and cytochemical observations,” Am. J. Pathol. 104, 237–249.

    PubMed  CAS  Google Scholar 

  • Braak, H. and Braak, E. (1991) “Neuropathological staging of Alzheimer-related changes” Acta Neuropathol. 82, 239–259.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A.W., Aldridge, W.N., Street, B.W. and Verschoyle, R.D. (1979) “The behavioural and neuropathologic sequeale of intoxication by trimethyltin compounds in the rat,” Am. J. Pathol. 97, 59–81.

    PubMed  CAS  Google Scholar 

  • Bruccoleri, A., Brown, H. and Harry, G.J. (1998) “Cellular localization and temporal elevation of tumor necrosis factor-alpha, interleukin-1 alpha, and transforming growth factor-beta 1 mRNA in hippocampal injury response induced by trimethyltin,” J. Neurochem. 71, 1577–1587.

    PubMed  CAS  Google Scholar 

  • Bruccoleri, A., Pennypacker, K.R. and Harry, G.J. (1999) “Effect of dexamethasone on elevated cytokine mRNA levels in chemicalinduced hippocampal injury”, J. Neurosci. Res. 57, 916–926.

    Article  PubMed  CAS  Google Scholar 

  • Cannon, R.L., Hoover, D.B., Baisden, R.H. and Woodruff, M.L. (1994) “The effect of time following exposure to trimethyltin (TMT) on cholinergic muscarinic receptor binding in rat hippocampus”, Mol. Chem. Neuropathol. 23, 47–62.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran, K., Hatanpaa, K., Brady, D.R. and Rapoport, S.I. (1996) “Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer’s disease”, Exp. Neurol. 142, 80–88.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L.W. and Dyer, R.S. (1983) “A time-course study of trimethyltin induced neuropathology in rats”, Neurobehav. Toxicol. Teratol. 5, 443–459.

    PubMed  CAS  Google Scholar 

  • Cho, S., Park, E.M., Kim, Y., Liu, N., Gal, J., Volpe, B.T. and Joh, T.H. (2001) “Early c-Fos induction after cerebral ischemia: a possible neuroprotective role”, J. Cereb. Blood Flow Metab. 21, 550–556.

    Article  PubMed  CAS  Google Scholar 

  • Cook, L.L., Stine, K.E. and Reiter, L.W. (1986) “Tin distribution in adult rat tissues after exposure to trimethyltin and triethyltin”, Toxicol. Appl. Pharmacol. 76, 344–348.

    Article  Google Scholar 

  • Coulson, E.J., Paliga, K., Beyreuther, K. and Masters, C.L. (2000) “What the evolution of the amyloid protein precursor supergene family tells us about its function”, Neurochem. Int. 36, 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Curran, T., Gordon, M.B., Rubino, K.L. and Sambucetti, L.C. (1987) “Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro”, Oncogene 2, 79–84.

    PubMed  CAS  Google Scholar 

  • Dagerlind, Å., Friberg, K., Bean, A.J. and Hökfelt, T. (1992) “Sensitive mRNA detection using unfixed tissue: combined radioactive and non-radioactive in situ hybridization histochemistry”, Histochemistry 98, 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow, M. and Robertson, H.A. (1990) “Brain injury induces c-fos protein(s) in nerve and glial-like cells in adult mammalian brain”, Brain Res. 455, 295–299.

    Article  Google Scholar 

  • Dyer, R.S., Walsh, T.J., Wonderlin, W.F. and Bercegeay, M. (1982) “The trimethyltin syndrome in rats”, Neurobehav. Toxicol. Teratol. 4, 127–133.

    PubMed  CAS  Google Scholar 

  • Earley, B., Burke, M., Leonard, B.E., Gouret, C.J. and Junien, J.L. (1990) “A comparison of the psychopharmacological profiles of phencyclidine, ketamine and (+) SKF 10,047 in the trimethyltin rat model”, Neuropharmacology 29, 695–703.

    Article  PubMed  CAS  Google Scholar 

  • Earley, B., Burke, M. and Leonard, B.E. (1992) “Behavioural, biochemical and histological effects of trimethyltin (TMT) induced brain damage in the rat”, Neurochem. Int. 21, 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Eikelenboom, P., Rozemuller, A.J., Hoozemans, J.J., Veerhuis, R. and van Gool, W.A. (2000) “Neuroinflammation and Alzheimer disease: clinical and therapeutic implications”, Alzheimer Dis. Assoc. Disord. 14, S54-S61.

    Article  PubMed  CAS  Google Scholar 

  • Esler, W.P. and Wolfe, M.S. (2001) “A portrait of Alzheimer secretases—new features and familiar faces”, Science 293, 1449–1454.

    Article  PubMed  CAS  Google Scholar 

  • Eyer, C.L., Rio, C. and Smith, J.R. (2000) “Trimethyltin reduces ATP levels and MTT reduction in the LRM55 rat astrocytoma cell line”, In Vitro Mol. Toxicol. 13, 263–268.

    CAS  Google Scholar 

  • Feuerstein, G.Z., Wang, X. and Barone, F.C. (1998) “The role of cytokines in the neuropathology of stroke and neurotrauma”, Neuroimmunomodulation 5, 143–159.

    Article  PubMed  CAS  Google Scholar 

  • Fiedorowicz, A., Figiel, I., Kaminska, B., Zaremba, M., Wilk, S. and Oderfeld-Nowak, B. (2001) “Dentate granule neuron apoptosis and glia activation in murine hippocampus induced by trimethyltin exposure”, Brain Res. 912, 116–127.

    Article  PubMed  CAS  Google Scholar 

  • Fortemps, F., Amand, G., Bomboir, A., Lauwerys, R. and Laterre, E.C. (1978) “Trimethyltin poisoning-report of two cases”, Int. Arch. Occup. Environ. Health 41, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, M.L. and Cleveland, D.W. (2001) “Going new places using an old MAP: tau, microtubules and human neurodegenerative diseases”, Curr. Opin. Cell Biol. 13, 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, W.S., Sheng, J.G., Royston, M.C., Gentleman, S.M., McKenzie, J.E., Graham, D.I., Roberts, G.W. and Mrak, R.E. (1998) “Glial-neuronal interactions in Alzheimer’s disease: the potential role of a cytokine cycle in disease progression”, Brain Pathol. 8, 65–72.

    PubMed  CAS  Google Scholar 

  • Hagan, J.J., Jensen, J.H.M. and Broekkamp, C.L.E. (1988) “Selective behavioural impairment after acute intoxication with trimethyltin (TMT) in rats”, Neurotoxicology 9, 53–74.

    PubMed  CAS  Google Scholar 

  • Horsburgh, K. and Saitoh, T. (1994) “Altered signal transduction in Alzheimer’s disease”, In: Terry, R.D., Katzman, R. and Bick, K.L., eds, Alzheimer Disease (Raven Press, New York), pp. 387–404.

    Google Scholar 

  • Hyman, B.T. (2001) “Molecular and anatomical studies in Alzheimer’s disease”, Neurologia 16, 100–104.

    PubMed  CAS  Google Scholar 

  • Ishikawa, K., Kubo, T., Shibanoki, S., Matsumoto, A., Hata, H. and Asai, S. (1997) “Hippocampal degeneration inducing impairment of learning in rats: model of dementia?”, Behav. Brain Res. 83, 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Maier, W.E., Brown, H.W., Tilson, H.A., Luster, M.I. and Harry, G.J. (1995) “Trimethyltin increases interleukin (IL)-1 alpha, IL-6 and tumor necrosis factor alpha mRNA levels in rat hippocampus”, J. Neuroimmunol. 59, 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Masliah, E., Mallory, M., Alford, M., Tanaka, S. and Hansen, L.A. (1998) “Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease”, J. Neuropathol. Exp. Neurol. 57, 1041–1052.

    Article  PubMed  CAS  Google Scholar 

  • McCann, M.J., O’Callaghan, J.P., Martin, P.M., Bertram, T. and Streit, W.J. (1996) “Differential activation of microglia and astrocytes following trimethyl tin-induced neurodegeneration”, Neuroscience 72, 273–281.

    Article  PubMed  CAS  Google Scholar 

  • Minami, M., Kuraishi, Y. and Satoh, M. (1991) “Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNF alpha and LIF in the rat brain”, Biochem. Biophys. Res. Commun. 176, 593–598.

    Article  PubMed  CAS  Google Scholar 

  • Minami, M., Kuraishi, Y., Yabuuchi, K., Yamazaki, A. and Satoh, M. (1952) “Induction of interleukin-1 beta mRNA in rat brain after transient forebrain ischemia”, J. Neurochem. 58, 390–392.

    Article  Google Scholar 

  • Nilsberth, C., Luthman, J., Lannfelt, L. and Schultzberg, M. (1999) “Expression of presenilin 1 mRNA in rat peripheral organs and brain”, Histochem. J. 31, 515–523.

    Article  PubMed  CAS  Google Scholar 

  • Nobel, C.S. and Schultzberg, M. (1995) “Induction of interleukin-1 beta mRNA and enkephalin mRNA in the rat adrenal gland by lipopolysaccharides studied by in situ hybridization histochemistry”, Neuroimmunomodulation 2, 61–73.

    Article  PubMed  CAS  Google Scholar 

  • Nolan, C.C., Brown, A.W. and Cavanagh, J.B. (1990) “Regional variations in nerve cell responses to trimethyltin intoxication in Mongolian gerbils and rats; further evidence for involvement of the Golgi apparatus”, Acta Neuropathol. 81, 204–212.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, A., Earley, B. and Leonard, B.E. (1994) “Changes in muscarinic (M1 and M2 subtypes) and phencyclidine receptor density in the rat brain following trimethyltin intoxication”, Neurochem. Int. 25, 243–252.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, A.W., Strada, O., Earley, B. and Leonard, B.E. (1997) “Altered expression of amyloid protein precursor mRNA in the rat hippocampus following trimethyltin intoxication: an in situ hybridization study”, Neurochem. Int. 30, 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, G. (1994) “The earliest signs of Alzheimer’s disease”, Geriatr. Psychiatry Neurol. 7, 118–122.

    Google Scholar 

  • Page, K., Hollister, R., Tanzi, R.E. and Hyman, B.T. (1996) “In situ hybridization analysis of presenilin 1 mRNA in Alzheimer disease and in lesioned rat brain”, Proc. Natl Acad. Sci. USA 93, 14020–14024.

    Article  PubMed  CAS  Google Scholar 

  • Powers, M.F. and Beavis, A.D. (1991) “Triorganotins inhibit the mitochondrial inner membrane anion channel”, J. Biol. Chem. 266, 17250–17256.

    PubMed  CAS  Google Scholar 

  • Ross, W.D., Emmett, E.A., Steiner, J. and Tureen, R. (1981) “Neurotoxic effects of occupational exposure to organotins”, Am. J. Psychiatry 138, 1092–1095.

    PubMed  CAS  Google Scholar 

  • Rubin, E.H., Morris, J.C. and Berg, L. (1987) “The progression of personality changes in senile dementia of the Alzheimer’s type”, J. Am. Geriatr. Soc. 35, 721–725.

    PubMed  CAS  Google Scholar 

  • Selkoe, D.J. (1999) “Translating cell biology into therapeutic advances in Alzheimer’s disease”, Nature 399, A23-A31.

    Article  PubMed  CAS  Google Scholar 

  • Selwyn, M.J. (1976) “Triorganotin compounds as ionophores and inhibitors of ion translocating ATPases”, In: Zuckerman, J.J., ed, Organotin Compounds: New Chemistry and Applications (American Chemical Society, Washington, DC), pp 204–225.

    Google Scholar 

  • Sheng, J.G., Mrak, R.E. and Griffin, W.S. (1995) “Microglial interleukin-1 alpha expression in brain regions in Alzheimer’s disease: correlation with neuritic plaque distribution”, Neuropathol. Appl. Neurol. 21, 290–301.

    CAS  Google Scholar 

  • Sheng, J.G., Griffin, W.S., Royston, M.C. and Mrak, R.E. (1998) “Distribution of interleukin-1-immunoreactive microglia in cerebral cortical layers: implications for neuritic plaque formation in Alzheimer’s disease”, Neuropathol. Appl. Neurol. 24, 278–283.

    CAS  Google Scholar 

  • Shivers, B.D., Hilbich, C., Multhaup, G., Salbaum, M., Beyreuther, K. and Seeburg, P.H. (1988) “Alzheimer’s disease amyloidogenic glycoprotein: expression pattern in rat brain suggests a role in cell contact”, EMBO J. 7, 1365–1370.

    PubMed  CAS  Google Scholar 

  • Solà, C., Mengod, G., Probst, A. and Palacios, J.M. (1993) “Differential regional and cellular distribution of β-amyloid precursor protein messenger RNAs containing and lacking the Kunitz protease inhibitor domain in the brain of human, rat and mouse”, Neuroscience 53, 267–295.

    Article  PubMed  Google Scholar 

  • Stine, K.E., Reiter, L.W. and Leinasters, J.J. (1988) “Alkyltin inhibition of ATPase activities in tissue homogenates and subcellular fractions from adult and neonatal rats”, Toxicol. Appl. Pharmacol. 94, 394–406.

    Article  PubMed  CAS  Google Scholar 

  • Su, J.H., Anderson, A.J., Cummings, B. and Cotman, C.W. (1994) “Immunocytochemical evidence for apoptosis in Alzheimer’s disease”, Neuroreport 5, 2529–2533.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Nishiyama, K., Murayama, S., Yamamoto, A., Sato, S., Kanazawa, I. and Sakaki, Y. (1996) “Regional and cellular presenilin 1 gene expression in human and rat tissues”, Biochem. Biophys. Res. Commun. 219, 708–713.

    Article  PubMed  CAS  Google Scholar 

  • Swartzwelder, H.S., Hepler, J., Holahan, W., King, S.E., Leverenz, H.A., Miller, P.A. and Myers, R.D. (1982) “Severely impaired maze performance in the rat caused by trimethyltin treatment: problem-solving deficits and preservation”, Neurobehav. Toxicol. Teratol. 4, 169–176.

    PubMed  CAS  Google Scholar 

  • Takahashi, H., Murayama, M., Takashima, A., Mercken, M., Nakazato, Y., Noguchi, K. and Imahori, K. (1996) “Molecular cloning and expression of the rat homologue of presenilin-1”, Neurosci. Lett. 206, 113–116.

    Article  PubMed  CAS  Google Scholar 

  • Tanimukai, H., Imaizumi, K., Kudo, T., Katayama, T., Tsuda, M., Takagi, T., Tohyama, M. and Takeda, M. (1998) “Alzheimerassociated presenilin-1 gene is induced in gerbil hippocampus after transient ischemia”, Mol. Brain Res. 54, 212–218.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, T.J., Miller, D.B. and Dyer, R.S. (1982) “Trimethyltin, a selective limbic system neurotoxicant, impairs radial-maze performance”, Neurobehav. Toxicol. Teratol. 4, 177–183.

    PubMed  CAS  Google Scholar 

  • Woodruff, M.L. and Baisden, R.H. (1990) “Exposure to trimethyltin significantly enhances acetylcholinesterase staining in the rat dentate gyrus”, Neurotoxicol. Teratol. 12, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff, M.L. and Baisden, R.H. (1994) “Trimethyltin neurotoxicity in the rat as an analogous model of Alzheimer’s disease”, In: Woodruff, M.L. and Nonneman, A.J., eds, Toxin-Induced Models of Neurological Disorders. (Plenum Press, New York), pp 319–335.

    Google Scholar 

  • Wragg, R. and Jeste, D. (1989) “Overview of depression and psychosis in Alzheimer’s disease”, Am. J. Psychiatry 146, 577–587.

    PubMed  CAS  Google Scholar 

  • Xiao, Y., Harry, G.J. and Pennypacker, K.R. (1999) “Expression of AP-1 transcription factors in rat hippocampus and cerebellum after trimethyltin neurotoxicity”, Neurotoxicology 20, 761–766.

    PubMed  CAS  Google Scholar 

  • Yang, K., Mu, X.S., Xue, J.J., Whtison, J., Salminen, A., Dixon, C.E., Liu, P.K. and Hayes, R.L. (1994) “Increased expression of c-fos mRNA and AP-1 transcription factors after cortical impact injury in rats”, Brain Res. 664, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, T., Kuraishi, Y., Minami, M., Nakai, S., Hirai, Y. and Satoh, M. (1991) “Methamphetamine-induced expression of interleukin-1 beta mRNA in the rat hypothalamus”, Neurosci. Lett. 128, 90–92.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, N.N., Nierenberg, D. and Turco, J.H. (1991) “Acute short-term memory loss from trimethyltin exposure”, J. Emerg. Med. 9, 137–139.

    Article  PubMed  CAS  Google Scholar 

  • Zawia, N.H. and Harry, G.J. (1993) “Trimethyltin-induced c-fos expression: adolescent vs neonatal rat hippocampus”, Toxicol. Appl. Pharmacol. 121, 99–102.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Luthman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsberth, C., Kostyszyn, B. & Luthman, J. Changes in APP, PS1 and other factors related to Alzheimer’s disease pathophysiology after trimethyltin-induced brain lesion in the rat. neurotox res 4, 625–636 (2002). https://doi.org/10.1080/1029842021000045471

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/1029842021000045471

Keywords

Navigation