Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-25T20:42:25.796Z Has data issue: false hasContentIssue false

Thiamin and Niacin in Ruminant Nutrition

Published online by Cambridge University Press:  14 December 2007

Johein Harmeyer
Affiliation:
Institute of Physiology, School of Veterinary Medicine, D-3000 Hannover 1, West Germany
Uwe Kollenkirchen
Affiliation:
Institute of Physiology, School of Veterinary Medicine, D-3000 Hannover 1, West Germany
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1989

References

REFERENCES

Abdouli, H. & Schaefer, D. M. (1985). Niacin saturation constants for Lactobacillus plantarum and Treponema bryantii. Journal of Dairy Science 68, 23722376.CrossRefGoogle Scholar
Abdouli, H. & Schaefer, D. M. (1986 a). Effects of two dietary niacin concentrations on ruminal fluid free niacin concentration, and of supplemental niacin and source of inoculum on in vitro microbial growth, fermentative activity and nicotinamide adenine dinucleotide pool size. Journal of Animal Science 62, 254262.CrossRefGoogle Scholar
Abdouli, H. & Schaefer, D. M. (1986 b). Impact of niacin and length of incubation on protein synthesis, soluble to total protein ratio and fermentative activity of ruminal microorganisms. Journal of Dairy Science 62, 244253.Google Scholar
Abdouli, H., Schäefer, D. M. & Pope, A. L. (1983). Effects of niacin supplementation on the rumen microbial population. Journal of Animal Science 57, 415 Abstr.Google Scholar
Alhadeff, L., Gualteri, C. T. & Lipton, M. (1984). Toxic effects of water-soluble vitamins. Nutrition Reviews 42, 3340.CrossRefGoogle ScholarPubMed
Allison, M. J. (1969). Biosynthesis of amino acids by ruminal microorganisms. Journal of Animal Science 29, 797807.CrossRefGoogle ScholarPubMed
Arambel, M. J., Bartley, E. E., Dennis, S. M., Riddell, D. O., Camac, J. L., Higginbotham, J. F., Simons, G. G. & Dayton, A. D. (1986). Effect of toasted soybean meal with or without niacin on rumen fermentation, passage rate of duodenal digesta and digestibility of nutrients. Nutrition Reports International 34, 10111020.Google Scholar
Bajmocy, E., Fazekas, B. & Tanyi, J. (1986). Occurrence of cerebrocortical necrosis (CCN) of calves in Hungary (Hungarian) Magyar Allatorvosok Lapja 41, 643646 Abstr.Google Scholar
Ballard, F. J., Hanson, R. W. & Kronfeld, D. S. (1969). Gluconeogenesis and lipogenesis in tissue from ruminant and nonruminant animals. Federation Proceedings 28, 218231.Google ScholarPubMed
Barnett, A. J. G. & Reid, R. L. (1961). Reactions in the Rumen, pp. 208212. London: Edward Arnold.Google Scholar
Barschdorf, D. (1985). Gastrointestinale Bilanz von Thiamin (Vit. B1) bei Schafen mit diätetische bedingter Phosphordepletion (Gastrointestinal balance of thiamin (Vit. B1) in phosphorus depleted sheep). Thesis med. vet., Veterinary School Hannover.Google Scholar
Bartley, E. E., Herod, E. L., Bechtle, R. M., Sapienza, D. A. & Brent, B. E. (1979). Effect of monensin or lasalocid, with and without niacin or amicloral, on rumen fermentation and feed efficiency. Journal of Animal Science 49, 10661075.CrossRefGoogle Scholar
Behrens, H. & Höller, H. (1977). Thiamingehalte in Lebern und Gehirnen von Schafen mit Cerebralnekrose, Listeriose und anderen Erkrankungen (Thiamin contents of liver and brain of sheep with cerebrocortical necrosis, listeriosis and other diseases). Deutsche Tierärztliche Wochenschrift 84, 305307.Google Scholar
Bender, D. A. (1980). Niacin. In Vitamins in Medicine, pp. 315347 [Barker, B. N. and Bender, D. A., editors]. London: William Heinemann Medical Books Ltd.Google Scholar
Bender, D. A. & Bender, A. E. (1986). Niacin and tryptophan metabolism: the biochemical basis of niacin requirements and recommendations. Nutrition Abstracts and Reviews 56, 695719.Google Scholar
Bender, D. A., Magboul, B. I. & Wynick, D. (1982). Probable mechanisms of regulation of the utilization of dietary tryptophan, nicotinamide and nicotinic acid as precursors of nicotinamide nucleotides in the rat. British Journal of Nutrition 48, 119127.CrossRefGoogle ScholarPubMed
Bergonzini, E., Fabri, R., Martillotti, F., Piva, G. & Amerio, M. (1977). Influenza della nicotinamide nell'alimentazione delle vacche da latte. (Effects of feeding nicotinamide to dairy cows.) Annali dell' lstituto Sperimentale per la Zootecnia 10, 5772.Google Scholar
Black, A. L., Kleiber, M., Butterworth, E. M., Brubacher, G. B. & Kaneko, J. J. (1957). The pentose phosphate cycle as a pathway for glucose metabolism in intact lactating dairy cows. Journal of Biological Chemistry 227, 537550.CrossRefGoogle Scholar
Bogin, E., Soback, S. & Immelman, A. (1985). Transketolase activity in the blood of cattle and sheep in relation to thiamine deficiency. Zentralblatt für Veterinärmedizin A 32, 135139.CrossRefGoogle ScholarPubMed
Boyd, J. B. & Walton, J. R. (1977). Cerebrocortical necrosis in ruminants; an attempt to identify the source of thiaminase in afflicted animals. Journal of Comparative Pathology 87, 581589.CrossRefGoogle Scholar
Bratton, G. R., Zmudzki, J., Bell, M. C. & Warnock, L. G. (1981 a). Thiamin effects on lead intoxication and deposition of lead in tissues: therapeutic potential. Toxicology and Applied Pharmacology 59, 164172.CrossRefGoogle ScholarPubMed
Bratton, G. R., Zmudzki, J., Kincaid, N. & Joyce, J. (1981 b). Thiamin as treatment of lead poisoning in ruminants. Modern Veterinary Practice 62, 441446.Google ScholarPubMed
Brent, B. E. & Bartley, E. E. (1984). Thiamin and niacin in the rumen. Journal of Animal Science 59, 813822.CrossRefGoogle ScholarPubMed
Breves, G., Brandt, M., Höller, H. & Rohr, K. (1981). Flow of thiamin in the duodenum in dairy cows fed different rations. Journal of Agricultural Science 96, 587591.CrossRefGoogle Scholar
Breves, G., Höller, H., Harmeyer, J. & Martens, H. (1980). Thiamin balance in the gastrointestinal tract of sheep. Journal of Animal Science 51, 11771181.CrossRefGoogle ScholarPubMed
Breves, G., Schmitt, R. & Höller, H. (1982). Thiamin compartment models in healthy sheep. International Journal for Vitamin and Nutrition Research 52, 38.Google ScholarPubMed
Brubacher, G., Haenel, A. & Ritzel, G. (1972). Transketolaseaktivität, Thiaminausscheidung und Blutthiamingehalt beim Menschen zur Beurteilung der Vitamin-B1-Versorgung. (Transketolase activity, excretion of thiamin and content of thiamin in blood in man as an indicator of thiamin supply.) International Journal for Vitamin and Nutrition Research 42, 190195.Google Scholar
Byers, F. M. (1979). Niacin and beef cattle performance. B vitamin enhances energy efficiency and adaptation to urea. Animal Nutrition and Health 34 (8), 2022.Google Scholar
Byers, F. M. (1980). Niacin for ruminants – a review. Feed Management 31 (7), 2430.Google Scholar
Byers, F. M. (1982). Interactions between micronutrients and B-vitamins in ruminants. Nuevos Conceptos Sobre Vitaminas Y Aditivos Para Ruminantes, Proceedings of the Micronutrient Symposium pp. 17. Mexico City: Universidad Nacional Autonoma de Mexico.Google Scholar
Candau, M. & Kone, L. (1980). In vitro effect of thiamin on rumen microbial metabolism. Reproduction, Nutrition, Développement 20, 16951699.CrossRefGoogle Scholar
Candau, M. & Massengo, J. (1982). Evidence of a thiamine deficiency in sheep fed maize silage. Annales de Recherches Vétérinaires 13, 329340.Google ScholarPubMed
Chen, K. K., Rose, E. L. & Robbins, E. B. (1984). Toxicity of nicotinic acid. Nutrition Reviews 42, 5254.CrossRefGoogle Scholar
Chick, B. F., Carroll, S. N., Kennedy, C. & McCleary, B. V. (1981). Some biochemical features of an outbreak of polioencephalomalacia in sheep. Australian Veterinary Journal 57, 251252.Google ScholarPubMed
Chytil, F. & McCormick, D. B. (1986). Nicotinic acid: analogs and coenzymes. Methods in Enzymology 122, 147184.Google Scholar
Clark, B. R., Halpern, R. M. & Smith, R. A. (1975). A fluorimetric method for quantitation in the picomole range of N1-methylnicotinamide and nicotinamide in serum. Analytical Biochemistry 68, 5461.CrossRefGoogle ScholarPubMed
Clausen, H. H. (1977). Die Transketolase: ein Mittel zur Erkennung subklinischer und klinischer Thiamin-Mangelzustände beim Rind (Transketolase: an indicator of subclinical and clinical thiamin deficiencies in cattle). Deutsche Tierärtzliche Wochenschrift 84, 462465.Google Scholar
Cooper, J. R., Nishino, K., Nishino, N. & Piros, K. (1982). The enzymatic synthesis of thiamin triphosphate. Annals of the New York Academy of Sciences 378, 177187.CrossRefGoogle ScholarPubMed
Cox, R. F. & Mathias, A. P. (1969). Cytoplasmic effects of cortisol in liver. Biochemical Journal 115, 777787.CrossRefGoogle ScholarPubMed
Cryer, D. (1985). Suspected cerebrocortical necrosis in the steenbok. Veterinary Record 117, 474.CrossRefGoogle ScholarPubMed
Décombaz, J. & Roux, L. (1982). Nicotinic acid increases glycogen utilization in exercise and reduces endurance. International Journal for Vitamin and Nutrition Research 52, 221.Google Scholar
Dennis, S. M., Arambel, M. J., Bartley, E. E., Riddell, D. O. & Dayton, A. D. (1982). Effect of heated or unheated soybean meal with or without niacin on rumen protozoa. Journal of Dairy Science 65, 16431646.CrossRefGoogle Scholar
Dickie, C. W., Nelson, R. J., Frazee, D. G., Krugman, L. D. & Bronner, E. (1979). Polioencephalomalacia in range cattle. Journal of the American Veterinary Medical Association 175, 460462.Google ScholarPubMed
Dreosti, I. E. (1984). Niacin. Journal of Food and Nutrition 41, 126133.Google Scholar
Drozdowski, S. (1978). [Changes in the thiamin concentration in the rumen of cattle and sheep fed fodder containing easily digestible carbohydrates and urea.] Zeszyty Naukowe Szkoly Glownej Gospodarstwa Wiejskiego, Akademia Rolniczej, Warszawiej, Weterinaria 8, 2138 (Chemical Abstracts 91, 191810a).Google Scholar
Dufva, G. S., Bartley, E. E., Dayton, A. D. & Ridell, D. O. (1983). Effect of niacin supplementation on milk production and ketosis of dairy cattle. Journal of Dairy Science 66, 23292336.CrossRefGoogle ScholarPubMed
Dufva, G. S., Bartley, E. E., Nagaraja, T. G., Dayton, A. D. & Frey, R. A. (1984). Effect of dietary niacin supplementation on serum constituents of periparturient dairy cattle. American Journal of Veterinary Research 45, 18381841.Google ScholarPubMed
Dunlop, R. H., Bueno, L. & Ruckebusch, Y. (1980). Slow wave spindle bursts in ovine polioencephalomalacia. In Metabolic Disorders in Farm Animals, IV International Conference on Production Disease in Farm Animals pp. 1619 [Giesecke, D., Dirksen, G. and Stangassinger, M., editors] München: Institut für Physiologie, Physiologische Chemie und Ernährungsphysiologie, Tierärztliche Fakultät der Universität München, FRG.Google Scholar
Edwin, E. E., Hebert, C. N., Jackman, R. & Masterman, S. (1976 b). Thiamine requirement of young ruminants. Journal of Agricultural Science 87, 679688.CrossRefGoogle Scholar
Edwin, E. E. & Jackman, R. (1970). Thiaminase I in the development of cerebrocortical necrosis in sheep and cattle. Nature 228, 772774.CrossRefGoogle ScholarPubMed
Edwin, E. E. & Jackman, R. (1973). Ruminal thiaminase and tissue thiamine in cerebrocortical necrosis. Veterinary Record 92, 640641.CrossRefGoogle ScholarPubMed
Edwin, E. E. & Jackman, R. (1982). Ruminant thiamine requirement in perspective. Veterinary Research Communications 5, 237250.CrossRefGoogle Scholar
Edwin, E. E., Jackman, R., Machin, A. F. & Quick, M. P. (1976 a). The importance of Δ'-pyroline in the aetiology of cerebrocortical necrosis. Biochemical and Biophysical Research Communications 70, 11901197.CrossRefGoogle ScholarPubMed
Elbert, J., Daniel, H. & Rehner, G. (1986). Intestinal uptake of nicotinic acid as a function of microclimate-pH. International Journal for Vitamin and Nutrition Research 56, 8594.Google ScholarPubMed
Evans, W. C. (1975). Thiaminases and their effects on animals. Vitamins and Hormones 33, 467504.CrossRefGoogle ScholarPubMed
Federici, G. & Genovesi, G. (1985). Polioencephalomalacia in ruminants. Obiettivi e Documenti Veterinari 7–8, 2125.Google Scholar
Frank, O., Luisada-Opfer, A. F., Feingold, S. & Baker, H. (1970). Vitamin-binding by human and some animal plasma proteins. Nutrition Reports International 6, 161168.Google Scholar
Gerbaulet, B. M. (1979). Thiamin im Inhalt des Magendarmtraktes von Schafen (Thiamin content of the gastrointestinal tract of sheep). Thesis med. vet., Veterinary School Hannover.Google Scholar
Gey, K. F. & Carlson, L. A. (editors) (1970). Metabolic Effects of Nicotinic Acid and its Derivatives. Bern: Hans Huber.Google Scholar
Giesecke, D. (1983). Nicotinsäure oder Nicotinamid? Biochemische Bedeutung der Vitamere und Wirkungsunterschiede im Stoffwechsel (Nicotinic acid or nicotinamide? Biochemical significance of the two vitamers and different metabolic effects). Übersichten zur Tierernährung 11, 133154.Google Scholar
Grant, D. G. A. (1976). Cerebrocortical necrosis in a cattle feedlot. Rhodesian Veterinarian 7, 1314.Google Scholar
Grigat, G. A. & Mathison, G. W. (1982). Thiamin supplementation of an all-concentrate diet for feedlot steers. Canadian Journal of Animal Science 62, 807819.CrossRefGoogle Scholar
Grigat, G. A. & Mathison, G. W. (1983 a). Thiamin and magnesium supplementation of all-concentrate diets for feedlot steers. Canadian Journal of Animal Science 63, 117131.CrossRefGoogle Scholar
Grigat, G. A. & Mathison, G. W. (1983 b). A survey of the thiamin status of growing and fattening cattle in Alberta feedlots. Canadian Journal of Animal Science 63, 715719.CrossRefGoogle Scholar
Gross, C. J. & Henderson, L. M. (1983). Digestion and absorption of NAD by the small intestine of the rat. Journal of Nutrition 113, 412420.CrossRefGoogle ScholarPubMed
Grosse-Holz, D. & Harmeyer, J. (1988). Blut- und Milchparameter nach Nicotinsärezulage bei laktierenden Kühen und Färsen (Blood and milk parameters in lactating cows with one or more lactations). Journal of Animal Physiology and Animal Nutrition 59, 182191.CrossRefGoogle Scholar
Gubler, C. J. (1984). Thiamin. In Handbook of Vitamins, Nutritional, Biochemical and Clinical Aspects, pp. 245297 [Machlin, L. J., editor]. New York: Marcel Dekker Inc.Google Scholar
Günther, K. D. (1987). Höhere Leistungen mit Vitamin B3 (Higher yields with vitamin B3). Ernährungsdienst 41, 67.Google Scholar
Gupta, G. C., Joshi, B. P. & Rai, P. (1976). The levels of thiamine in the rumen fluid and blood serum in the spontaneous bovine rumen dysfunctions. Acta Veterinaria, Brno 45, 205210.Google Scholar
Gustafsson, K. & Kiessling, H. (1982). The mouse as a model for evaluation of hypotriglyceridemic drugs effects of nicotinic acid, clofibrate and ethyl-2-(-4-dibenzofuranoxyloxy)-2-methylpropionate on plasma lipoproteins. Versuchstierkunde 24, 271277.Google Scholar
Hankes, L. V. (1984). Nicotinic acid and nicotinamide. In Handbook of Vitamins, Nutrional, Biochemical and Clinical Aspects, pp. 329377 [Machlin, L. J., editor]. New York: Marcel Dekker Inc.Google Scholar
Harmeyer, J. & Grabe, v. C. (1981). Der Einfluss hoher Leistungen auf die Ketogenese bei Milchkühen und die Wirkung einer Niacinzulage (Ketogenesis in high performing milking cows and the effect of a niacin supplement). Deutsche Tierärtzliche Wochenschrift 88, 401404.Google Scholar
Harris, R. S., Jansen, B. C. P., Wuest, H. M., Lamden, M. P., Brown, G. M., Rogers, E. F., Unna, K. R. & Sebrell, W. H. (1972). Thiamine. In The Vitamins, vol. V, pp. 97164 [Sebrell, W. H. and Harris, R. S., editors]. New York: Academic Press.Google Scholar
Haven, T. R., Caldwell, D. R. & Jensen, R. (1983). Role of predominant rumen bacteria in the cause of polioencephalomalacia (cerebrocortical necrosis) in cattle. American Journal of Veterinary Research 44, 14511455.Google ScholarPubMed
Hennig, A., Flachowsky, G. & Löhnert, H.-J. (1976). Einfluss der Ernährung auf das Auftreten von zerebrokortikaler Nekrose bei jungen Wiederkäuern (Dietary effects on the development of cerebrocortical necrosis in young ruminants). Archiv für Tierernährung 26, 733 Abstr.Google Scholar
Höller, H. A. & Breves, G. (1980). Vitamin B1 in the sheep rumen. Tanzanian Veterinary Bulletin 2, 3137.Google Scholar
Höller, H., Breves, G., Lebzien, P. & Rohr, K. (1985). Effect of monensin on net synthesis of thiamin and microbial protein in the rumen of cows Proceedings of the Nutrition Society 44, 146A.Google Scholar
Höller, H., Breves, G. & Schmitt, R. (1979 a). Disappearance from blood and urinary excretion of 35S-thiamin in sheep; a kinetic study. International Journal for Vitamin Nutrition and Research 49, 391395.Google ScholarPubMed
Höller, H., Buchhop, K. & Breves, G. (1979 b). Untersuchungen zur Passage von Thiamin (Vit. B1) durch die Pansenwand von Schafen in vivo (Investigation on the passage of thiamin (Vit. B1) across the rumen epithelium of sheep in vivo). Zentralblatt für Veterinärmedizin A 26, 841846.Google Scholar
Höller, H., Fecke, M. & Schaller, K. (1977). Permeability to thiamin of the sheep rumen wall in vitro. Journal of Animal Science 44, 158161.CrossRefGoogle Scholar
Höller, H., Hübel, U. & Breves, G. (1982). Untersuchungen zur Thiaminresorption aus dem Dickdarm von Schafen mit Hilfe der Colonperfusion (Investigation of thiamin absorption from the perfused colon of sheep). Zentralblatt für Veterinärmedizin A 29, 619627.Google Scholar
Höller, H., Schaller, K. & Behrens, H. (1976). Untersuchungen über die Vitamin B1-inaktivierende Wirkung in vitro von pflanzlichen Futtermitteln (Investigation of vitamin B1 inactivation by plant feedstuffs). Deutsche Tierärtzliche Wochenschrift 83, 108111.Google Scholar
Horner, J. L., Coppock, C. E., Schelling, G. T., Labore, J. M. & Nave, D. H. (1986). Influence of niacin and whole cottonseed on intake, milk yield and composition, and systemic responses of dairy cows. Journal of Dairy Science 69 30873093.CrossRefGoogle ScholarPubMed
Hoyumpa, A. M. (1982). Characterization of normal intestinal thiamin transport in animals and man. Annals of the New York Academy of Sciences 378, 337343.CrossRefGoogle Scholar
Itokawa, Y., Inoue, K., Natori, Y., Okazaki, K. & Fujiwara, M. (1972). Effect of thiamine on growth, tissue magnesium, thiamine levels and transketolase activity in magnesium deficient rats. Journal of Vitaminology 18, 159164.CrossRefGoogle ScholarPubMed
Jaster, E. H., Bell, D. F. & McPherron, T. A. (1983 a). Nicotinic acid and serum metabolite concentrations of lactating dairy cows fed supplemental niacin. Journal of Dairy Science 66, 10391045.CrossRefGoogle ScholarPubMed
Jaster, E. H., Hartnell, G. F. & Hutjens, F. (1983 b). Effect of feeding supplemental niacin on milk production in six dairy herds. Journal of Dairy Science 66, 10461051.CrossRefGoogle ScholarPubMed
Kazemi, M. & Brent, B. E. (1985). Polioencephalomalacia in ruminants: activation of thiaminase I by its consubstrates. Journal of Dairy Science 61 (Suppl. 1), 456 Abstr.Google Scholar
Koike, M. & Koike, K. (1982). Biochemical properties of mammalian 2-oxo acid dehydrogenase multienzyme complexes and clinical relevancy with chronic lactic acidosis. Annals of the New York Academy of Sciences 378, 225235.CrossRefGoogle ScholarPubMed
Kollenkirchen, U. (1987). Die Verteilung von Nikotinsäure und Nicotinamid im Pansensaft von Schafen (Partition of nicotinic acid and nicotinamide in rumen contents from sheep). Thesis rer, nat., University of Hannover.Google Scholar
Kollenkirchen, U. & Harmeyer, J. (1986). Influence of dietary niacin on the outflow of niacin from the rumen of sheep. 6th International Conference of Production Diseases in Farm Animals, Belfast pp. 137140.Google Scholar
Kollenkirchen, U. & Harmeyer, J. (1989 a). Purification procedure for determination of niacin vitamers in gastrointestinal content and blood. Journal of Veterinary Medicine A 36, 247252.CrossRefGoogle ScholarPubMed
Kollenkirchen, U. & Harmeyer, J. (1986 b). Evaluation of elution parameters in reversed phase HPLC for the determination of niacin vitamers and metabolites. Journal of Veterinary Medicine A 36, 253260.Google Scholar
Kronfeld, D. S. & Raggi, F. (1964). Nicotinamide coenzyme concentration in mammary biopsy samples from ketotic cows. Biochemical Journal 90, 219224.CrossRefGoogle ScholarPubMed
Kung, L. J., Gubert, K. & Huber, J. T. (1980). Supplemental niacin for lactating cows fed diets of natural protein or nonprotein nitrogen. Journal of Dairy Science 63, 20202025.CrossRefGoogle ScholarPubMed
Laarsveld, B. (1983). Ketosis update. Fourth Western Nutrition Conference, pp. 229236.Google Scholar
Lafrance, L., Routhier, D., Tetu, C. & Tetu, B. (1979). Effects of noradrenaline and nicotinic acid on plasma free fatty acids and oxygen consumption in cold-adapted rats. Canadian Journal of Physiology and Pharmacology 57, 725730.CrossRefGoogle ScholarPubMed
Latham, M. C. (1967). Present knowledge of thiamine. In Present Knowledge in Nutrition. 25th Anniversary of the Nutrition Foundation, 3rd ed., pp. 5560. New York.Google Scholar
Lebzien, P., Rohr, K., Breves, G. & Höller, H. (1986). Untersuchungen über den Einfluss von Rumensin (Monensin-Natrium) auf die Stickstoffumsetzungen und die Thiaminnettosynthese in den Vormägen von Wiederkäuern (Investigation of the effect of rumensin (monensin-sodium salt) on nitrogen metabolism and net synthesis of thiamin in the forestomach of ruminants). Journal of Animal Physiology and Animal Nutrition 55, 177186.CrossRefGoogle Scholar
Loew, F. M. (1975). A thiamin-responsive polioencephalomalacia in tropical and nontropical livestock production systems. World Review of Nutrition and Dietetics 20, 168183.CrossRefGoogle Scholar
Loew, F. M. & Dunlop, R. H. (1972 a). Blood thiamin in bovine polioencephalomalacia. Canadian Journal of Comparative Medicine 36, 345347.Google ScholarPubMed
Loew, F. M. & Dunlop, R. H. (1972 b). Induction of thiamin inadequacy and polioencephalomalacia in adult sheep with Amprolium. American Journal of Veterinary Research 33, 21952205.Google ScholarPubMed
McCreanor, G. M. & Bender, D. A. (1986). The metabolism of high intakes of tryptophan, nicotinamide and nicotinic acid in the rat. British Journal of Nutrition 56, 577586.CrossRefGoogle Scholar
McDonald, J. W. (1982). Mortality and illthrift associated with thiamine deficiency in lambs. Australian Veterinary Journal 58, 212213.CrossRefGoogle ScholarPubMed
Mann, S. O., Wilson, A. B., Barr, M., Lawson, W. J., Duncan, L., Smith, A., Fell, B. F., Walker, H. F. & MacDonald, D. C. (1983). Thiaminase activity in the gut of cobalt-deficient sheep. Australian Journal of Agricultural Research 34, 211218.CrossRefGoogle Scholar
Markson, L. M., Edwin, E. E., Lewis, G. & Richardson, C. (1974). The production of cerebrocortical necrosis in ruminant calves by the intraruminal administration of Amprolium. British Veterinary Journal 130, 916.CrossRefGoogle ScholarPubMed
Mathison, G. W. (1986). B-vitamins, choline, inositol and paraaminobenzoic acid for ruminants. 21st Annual Pacific Northwest Animal Nutrition Conference, Vancouver pp. 107157.Google Scholar
Menke, K. H. (1973). Vitaminsynthesen im Pansen (Vitamin syntheses in the rumen). In Biologie und Biochemie der mikrobiellen Verdauung (Biology and Biochemistry of Microbial Digestion), pp. 235255 [Giesecke, D. and Henderickx, H. K., editors]. Munich: BLV Verlagsgesellschaft.Google Scholar
Miller, B. L., Goodrich, R. D. & Meiske, J. C. (1983 a). Effects of chlortetracycline on B-vitamin production in steers, Journal of Animal Science 57, (Suppl. 1), 453454 Abstr.Google Scholar
Miller, B. L., Meiske, J. C. & Goodrich, R. D. (1986 a). Effects of dietary additives on B-vitamin production and absorption in steers. Journal of Animal Science 62, 484496.CrossRefGoogle Scholar
Miller, B. L., Meiske, J. C. & Goodrich, R. D. (1986 b). Effects of grain source and concentrate level on B-vitamin production and absorption in steers. Journal of Animal Science 62, 473483.CrossRefGoogle Scholar
Miller, B. L., Plegge, S. D., Goodrich, R. D. & Meiske, J. C. (1983 b). Influence of dietary grain level on production and absorption of B-vitamins in beef steers. Minnesota Beef Report B 299, 46.Google Scholar
Miller, B. L., Plegge, S. D., Goodrich, R. D. & Meiske, J. C. (1983 c). Influence of grain source on production and absorption of B-vitamins in beef steers. Minnesota Beef Report B 299, 13.Google Scholar
Miller, B. L., Plegge, S. D., Goodrich, R. D. & Meiske, J. C. (1983 d). Influence of Monensin on B-vitamin synthesis and absorption in beef steers. Minnesota Beef Report B 299, 79.Google Scholar
Morgan, K. T. & Lawson, G. H. K. (1974). Thiaminase type I-producing bacilli and ovine polioencephalomalacia. Veterinary Record 95, 361363.CrossRefGoogle Scholar
Moss, G. (1964). The contribution of the hexose monophosphate shunt to cerebral glucose metabolism. Diabetes 13, 585591.CrossRefGoogle ScholarPubMed
Mueller, R. E. & Asplund, J. M. (1981). Evidence in the ovine that polioencephalomalacia is not a result of an uncomplicated thiamin deficiency. Nutrition Reports International 24, 95104.Google Scholar
Muller, L. D., Heinrichs, A. J., Cooper, J. B. & Atkin, Y. H. (1986). Supplemental niacin for lactating cows during summer feeding. Journal of Dairy Science 69, 14161420.CrossRefGoogle ScholarPubMed
Naga, M. A., Harmeyer, J. H., Höller, H. & Schaller, K. (1975). Suspected “B”-vitamin deficiency of sheep fed a protein-free urea containing purified diet. Journal of Animal Science 40, 11921198.CrossRefGoogle ScholarPubMed
Nakajima, N. (1984). Studies on the metabolism of thiamine in cattle: blood level and urinary excretion after intravenous administration of thiamine preparations. Journal of the Japanese Veterinary Medical Association 37, 99103.Google Scholar
Nishino, K. & Itokawa, Y. (1983). Enzyme system involved in the synthesis of thiamin triphosphate. Journal of Biological Chemistry 258, 1187111878.CrossRefGoogle ScholarPubMed
Ogawa, K., Sakai, M. & Inomata, K. (1982). Recent findings on ultracytochemistry of thiamin phosphatases. Annals of the New York Academy of Sciences 378, 188214.CrossRefGoogle ScholarPubMed
Oracovà, V. & Cörner, F. (1960). Teneur du lait de brebis en vitamines A1, B1, B2 (Vitamin A1, B1 and B2 content in ewe's milk.) Annales de la Nutrition et d'Alimentation 14, 151160.Google Scholar
Pike, R. L. & Brown, M. L. (1975). Nutrition: An Integrated Approach 2nd ed., p. 95. New York: John Wiley and Sons.Google Scholar
Plaitakis, A., Hwang, E. C., Van Woert, M. H., Szilagyi, P. I. A. & Berl, S. (1982). Effect of thiamin deficiency on brain neurotransmitter systems. Annals of the New York Academy of Sciences 378, 367381.CrossRefGoogle ScholarPubMed
Pohlenz, J. F. L. (1975 a). Experimentelle Untersuchungen zur Vitamin B1 Hypovitaminose bei Wiederkäuern (Experimental investigations of vitamin B1 hypovitaminosis of ruminants). Habilitationsschrift, Veterinary Faculty, University of Zurich.Google Scholar
Pohlenz, J. F. L. (1975 b). Zur Thiaminversorgung von Mastkälbern (The supply of thiamin in fattening calves). Übersichten zur Tierenährung 3, 301.Google Scholar
Porter, J. W. G. (1961). Vitamin synthesis in the rumen. In Digestive Physiology and Nutrition of the Ruminant, pp. 226234 [Lewis, D., editor]. London: Butterworth.Google Scholar
Rammell, C. G. & Hill, J. H. (1986). A review of thiamine deficiency and its diagnosis, especialy in ruminants. New Zealand Veterinary Journal 34, 202204.CrossRefGoogle Scholar
Reid, I. M. & Treacher, R. J. (1983). Niacin in the dairy cow. Roche Brochure, 15 pp. (Reprinted from Roche vitamin symposium, 1982).Google Scholar
Riddell, D. O., Arambel, M. J., Dufva, G. S., Bartley, E. E., Dayton, A. D., Nagaraja, T. G. & Miller, G. W. (1985). Ruminal synthesis and degradation of niacin and its concentration in cattle blood. Nutrition Reports International 31, 407413.Google Scholar
Riddell, D. O., Bartley, E. E. & Dayton, A. D. (1980). Effect of nicotinic acid on rumen fermentation in vitro and in vivo. Journal of Dairy Science 63, 14291435.CrossRefGoogle ScholarPubMed
Riddell, D. O., Bartley, E. E. & Dayton, A. D. (1981). Effect of nicotinic acid on microbial protein synthesis in vitro and on dairy cattle growth and milk production. Journal of Dairy Science 64, 782791.CrossRefGoogle ScholarPubMed
Robinson, J. R. (1986). Niacin in beef cattle nutrition. Animal Nutrition and Health 41, 910.Google Scholar
Rogers, E. F. (1982). General discussion of antithiamin compounds and thiamin antagonists. Annals of the New York Academy of Sciences 378, 157160.CrossRefGoogle ScholarPubMed
Rohr, K., Lepzien, P., Schafft, H. & Schulz, E. (1986). Prediction of duodenal flow of non-ammonia nitrogen and amino acid nitrogen in dairy cows. Livestock Production Science 14, 2940.CrossRefGoogle Scholar
Ruegsegger, G. J. & Schultz, L. H. (1986). Use of a combination of propylene glycol and niacin for subclinical ketosis. Journal of Dairy Science 69, 14111415.CrossRefGoogle ScholarPubMed
Säuberlich, H. E. (1981). Recent advances in analytical methods for the water-soluble vitamins. In Nutrition in Health and International Development: Symposia from the XIIth International Congress of Nutrition, pp. 151157. New York: Alan R. Liss.Google Scholar
Schaetzel, W. P. & Johnson, D. E. (1981). Nicotinic acid and dilution rate effects on in vitro fermentation efficiency. Journal of Animal Science 53, 11041108.CrossRefGoogle Scholar
Schuette, S. A. & Rose, R. C. (1983). Nicotinamide uptake and metabolism by chick intestine. American Journal of Physiology 245, 531538.Google ScholarPubMed
Schultz, L. H. (1971). Management and nutritional aspects of ketosis. Journal of Dairy Science 54, 962973.CrossRefGoogle ScholarPubMed
Schultz, L. H. (1983). Niacin in dairy rations. Official Proceedings, 18th Annual Pacific Northwest Animal Nutrition Conference pp. 6976. Corvallis, OR: Oregon State University.Google Scholar
Schussler, S. L., Fahey, G. C., Robinson, J. B., Masters, S. S., Loerch, S. C. & Spears, J. W. (1978). The effect of supplemental niacin on in vitro cellulose digestion and protein synthesis. International Journal for Vitamin and Nutrition and Research 48, 359367.Google ScholarPubMed
Schwab, C. G. (1983). Supplemental niacin for cows in early lactation. New England Dairy Feed Conference, pp. 17. Concord, NH: University of New Hampshire.Google Scholar
Shibata, K. (1987). Blood pyridine nucleotide levels reflect niacin equivalent intake in humans. Journal of Clinical Biochemistry and Nutrition 43, 3745.CrossRefGoogle Scholar
Shibata, K., Kawada, T. & Iwai, K. (1987). Microdetermination of N1-methyl-2-pyridone-5-carboxamide, a major metabolite of nicotinic acid and nicotinamide, in urine by high-performance liquid chromatography. Journal of Chromatography Biomedical Applications 417, 173177.CrossRefGoogle Scholar
Shibata, K., Tanaka, K. & Murata, K. (1986). Efficiency of exogenous quinolinic acid as niacin in rats. Agricultural and Biological Chemistry 50, 20252032.Google Scholar
Shields, D. R., Schaefer, D. M. & Perry, T. W. (1983). Influence and niacin supplementation and nitrogen source on rumen microbial fermentation. Journal of Animal Science 57, 15761583.CrossRefGoogle Scholar
Sipöcz, J. & Schmidt, J. (1985). Wirkung einer Niacin (Nikotinsäure)-Zulage auf Milchleistung, Milchzusammensetzung und einige Parameter des Blutserums (Effect of a niacin (nicotinic acid) supplement on milk production, milk composition and some blood parameters). Kraftfutter 68, 253256.Google Scholar
Smith, R. W. & Glascock, R. F. (1969). The effects of acetate and of pyruvate on the pathways of glucose catabolism in lactating mammary tissue. II. Sheep tissue. Journal of Dairy Research 36, 469478.CrossRefGoogle Scholar
Spector, R. (1982). Thiamin homeostasis in the central nervous system. Annals of the New York Academy of Sciences 378, 344354.CrossRefGoogle ScholarPubMed
Stanulovic, M. & Chaykin, S. (1971). Metabolic origins of the pyridones of N1-methylnicotinamide in man and rat. Archives of Biochemistry and Biophysics 145, 3542.CrossRefGoogle Scholar
Steinberg, W. & Kaufmann, W. (1977). Untersuchungen zur bakteriellen Thiaminsynthese in den Vormägen von Milchkühen (Investigation of bacterial synthesis of thiamin in the forestomach of milking cows). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 39, 289301.CrossRefGoogle Scholar
Steinberg, W., Kaufmann, W. & Hagemeister, H. (1977). Messungen zur Bestimmung der Resorption von Thiamin in den Vormägen und im Darm von Milchkühen (Experimental studies of thiamin absorption from forestomach and intestine of milking cows). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 39, 282288.CrossRefGoogle Scholar
Suzuki, K. & Ooba, J. I. (1973). Reversible inactivation of extracellular thiaminase I in Bacillus thiaminolyticus. I. Inactivation by the primary substrate and reactivation by the secondary substrate. Biochimica et Biophysica Acta 293, 111117.CrossRefGoogle ScholarPubMed
Tanwar, R. K. (1987). Polioencephalomalacia, an emerging disease of goats. Indian Journal of Animal Science 57, 14.Google Scholar
Thomas, K. W. (1986 a). The effect of thiaminase-induced subclinical thiamine deficiency on growth of weaner sheep. Veterinary Research Communications 10, 125141.CrossRefGoogle ScholarPubMed
Thomas, K. W. (1986 b). Oral treatment of polioencephalomalacia and subclinical thiamine deficiency with thiamine propyl disulphide and thiamine hydrochloride. Journal of Veterinary Pharmacology and Therapy 9, 402411.CrossRefGoogle ScholarPubMed
Thornber, E. J., Dunlop, R. H. & Gawthorne, J. M. (1980). Thiamin deficiency in the lamb. Journal of Neurochemistry 35, 713717.CrossRefGoogle ScholarPubMed
Thornber, E. J., Dunlop, R. H., Gawthorne, J. M. & Huxtable, C. R. (1981). Induced thiamin deficiency in lambs. Australian Veterinary Journal 57, 2126.CrossRefGoogle ScholarPubMed
Van Soest, P. J. (1982). Nutritional Ecology of the Ruminant, pp. 241243, Portland, OR: Durham and Downey.Google Scholar
Vincke, B. J., Devleeschouwer, M. J., Dony, J. & Patriarche, G. (1984). Analytical determination of nicotinamide using bacterial electrodes. International Journal of Pharmacy 21, 265275.CrossRefGoogle Scholar
Virtanen, A. I. (1963). Produktion der Kuhmilch ohne Protein mit Harnstoff und Ammoniumsalzen als Stickstoffquelle und gereinigten Kohlenhydraten als Energiequelle (Production of cows' milk in the absence of feed protein with urea and ammonium salts as nitrogen sources and with purified carbohydrates as energy source). Biochemische Zeitschrift 338, 443453.Google Scholar
Warner, A. C. I. (1964). The breakdown of asparagine, glutamine, and other amides by microorganisms from the sheep's rumen. Journal of Biological Science 17, 170182.Google Scholar
Wilson, A. B., Mann, S. O., Barr, M. & Lawson, W. J. (1984). Asymptomatic thiaminase activity in sheep gut. Microbios Letters 26, 5761.Google Scholar
Yamada, O., Shin, M., Sano, K. & Umezawa, C. (1983). Effect of leucine and α-ketoisocaproic acid on NAD biosynthesis from tryptophan or nicotinic acid in the isolated rat liver cells. International Journal for Vitamin and Nutrition Research 53, 184191.Google ScholarPubMed
Yano, H. & Kawashima, R. (1977). Effects of thiamine administration on blood lactic acid concentration and mineral metabolism in sheep. Journal of Nutritional Science and Vitaminology 23, 491496.CrossRefGoogle ScholarPubMed
Yeh, Y. Y. (1976). Nicotinic acid reverses fasting ketosis by lowering the level of cyclic AMP. Life Sciences 18, 3338.CrossRefGoogle ScholarPubMed
Yeh, Y. Y. (1979). The opposing effects of nicotinic acid and dibutyryl cyclic adenosine 3,5-monophosphate on ketogenesis in isolated rat hepatocytes. Journal of Nutrition 109, 110118.CrossRefGoogle Scholar
Zinn, R. A., Owens, F. N., Stuart, R. L., Dunbar, J. R. & Norman, B. B. (1987). B-vitamin supplementation of diets for feedlot calves. Journal of Animal Science 65, 267277.CrossRefGoogle ScholarPubMed
Zintzen, H. (1973). Vitamin B1 (Thiamin) in der Ernährung des Wiederkäuers (Vitamin B1 (thiamin) in ruminant nutrition). Übersichten zur Tierernährung 1, 273323.Google Scholar
Zöllner, N. (1971). Effect of nicotinic acid and some derivatives on blood levels of triglycerides of man. In Metabolic Effects of Nicotinic Acid and its Derivatives, pp. 427430 [Gey, K. F. and Carlson, L. A., editors]. Bern: Hans Huber.Google Scholar
Zoltewicz, J. A., Kauffman, G. & Uray, G. (1982). Nucleophilic substitution reactions of thiamin and its derivatives. Annals of the New York Academy of Sciences 378, 713.CrossRefGoogle Scholar
Zweiacker, F. (1982). Niacin in der Fütterung von Milchkühen (Feed niacin for milking cows). Kraftfutter 65, 336338.Google Scholar