Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T19:25:51.801Z Has data issue: false hasContentIssue false

In vitro availability of iron and zinc: effects of the type, concentration and fractions of digestion products of the protein

Published online by Cambridge University Press:  09 March 2007

Francisca Pérez-Llamas*
Affiliation:
Department of Physiology and Pharmacology and Pharmacology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
Mechteldis G. E. Diepenmaat-Wolters
Affiliation:
2TNO Nutrition and Food Research, PO Box 360, 3700 AJ Zeist, The Netherlands
Salvador Zamora
Affiliation:
Department of Physiology and Pharmacology and Pharmacology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
*
* To Whom correspondence should addressed (telephone 34 68 307100; fax 34 68 363963).
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An in vitro dialysis method was employed to determine the effect on the Fe and Zn absorption of the type (beef, pork and soyabean) and the amount (10 and 30 g/kg) of protein present. In addition, the effects of low- and high-molecular-weight (LMW and HMW respectively) digestion products were investigated. After in vitro digestion and dialysis a lower percentage of N, Fe and Zn was found in the LMW fractions from beef, pork and soyabean proteins when the protein level was increased from 10 to 30 g/kg; the higher level of protein being associated with a lower percentage of hydrolysed protein. The highest percentage levels of intrinsic Fe were always found in the HMW fractions, independent of the type and the level of proteins studied, while in the case of Zn, both HMW and LMW fractions gave similar values. An interaction was found between inorganic Zn and non-haem-Fe. The addition of inorganic Zn (10 μg/ml) caused a significant decrease in the in vitro availability of Fe from soyabean protein, while it did not affect the dialysability of intrinsic Fe from beef and pork proteins. Our results showed that the type and the level of the protein had a positive effect on the dialysability of extrinsic Fe. We postulate that the effect of a protein on the absorption of extrinsic Fe could be accounted for by free amino acids and/or small peptides released during the digestion process and also by the undigested or partially-digested HMW fractions of hydrolysed proteins which could play a fundamental role in the availability of this essential element.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Berner, L. A. & Miller, D. D. (1985). Effects of dietary proteins on iron bioavailability - a review. Food Chemistry 47, 4769.CrossRefGoogle Scholar
Bodwell, C. E. (1983). Effects of soy protein on iron and zinc utilization in humans. Cereal Foods World 28, 342348.Google Scholar
Bos, K. D., Verbeek, C., Van Eeden, C. H. P., Slump, P. & Wolters, M. G. E. (1991). Improved determination of phytate by ion-exchange chromatography. Journal of Agricultural and Food Chemistry 39, 17701772.CrossRefGoogle Scholar
Champagne, E. T. (1989). Low gastric hydrochloric acid secretion and mineral bioavailability. Advances in Experimental Medicine and Biology 249, 173184.CrossRefGoogle ScholarPubMed
Champagne, E. T. & Phillippy, B. Q. (1989). Effects of pH on calcium, zinc and phytate solubilities and complexes following in vitro digestion of soy protein isolate. Journal of Food Science 54, 587592.CrossRefGoogle Scholar
Cheryan, M. (1980). Phytic acid interactions in food systems. CRC Critical Reviews in Food Science and Nutrition 13, 297335.CrossRefGoogle ScholarPubMed
Churella, H. R. & Vivian, V. M. (1989). Effect of phytic acid level in soy protein based infant formulas on mineral availability in the rat. Journal of Agricultural and Food Chemistry 37, 13521357.CrossRefGoogle Scholar
Cook, J. D., Morck, T. A. & Lynch, S. R. (1981). The inhibitory effect of soy products on nonheme iron absorption in man. American Journal of Clinical Nutrition 34, 26222629.CrossRefGoogle ScholarPubMed
Cossack, Z. T. & Prasad, A. S. (1983). Effect of protein source on the bioavailability of zinc in human subjects. Nutrition Research 3, 2331.CrossRefGoogle Scholar
Dahiya, S. & Kapoor, A. C. (1994). In vitro and in vivo availability of iron from home processed supplementary foods. Journal of Food Science and Technology 31, 122125.Google Scholar
deRham, O. & Jost, T. (1979). Phytate-protein interactions in soyabean extracts and low-phytate so protein products. Journal of Food Science 44, 596600.CrossRefGoogle Scholar
Diepenmaat-Wolters, M. G. E. (1992). Prediction of the bioavailability of minerals and trace elements. PhD Thesis, Wageningen Agricultural University.Google Scholar
Diepenmaat-Wolters, M. G. E. & Schreuder, H. A. W. (1993). A continuous in vitro method for estimation of the bioavailability of minerals and trace elements in foods. In Nutritional, Chemical and Food Processing Implication of Nutrient Availability, pp. 4347 [Schlemmer, U., editor]. Karlsruhe, Germany: B. F. E. Karlsruhe.Google Scholar
Erdman, J. W. Jr (1979). Oilseed phytates: nutritional implications. Journal of the American Oil Chemists' Society 56, 736741.CrossRefGoogle Scholar
Evans, G. W. & Johnson, P. E. (1980). Characterization and quantitation of a zinc-binding ligand in human milk. Pediatrics Research 14, 876880.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J. & Southon, S. (1989). Studies of iron:zinc interactions in adult rats and the effect of iron fortification of two commercial infant weaning products on iron and zinc status of weanling rats. Journal of Nutrition 119, 599606.CrossRefGoogle ScholarPubMed
Forbes, R. M., Weingartner, K. E., Parker, H. M., Bell, R. R. & Erdman, J. W. (1979). Bioavailability to rats of zinc, magnesium and calcium in casein-, egg- and soy protein-containing diets. Journal of Nutrition 109,16521660.CrossRefGoogle ScholarPubMed
Gillett, T. A., Meiburg, D. E., Brown, C. L. & Simon, S. (1977). Parameters affecting meat protein extraction and interpretation of model system data for meat emulsion formation. Journal of Food Science 42, 16061610.CrossRefGoogle Scholar
Gillooly, M., Torrance, J. D., Bothwell, T. H., MacPhail, A. P., Mills, W. & Mayet, F. (1984). The relative effect of ascorbic acid on iron absorption from soy-based and milk-based infant formulas. American Journal of Clinical Nutrition 40, 522527.CrossRefGoogle ScholarPubMed
Gordon, D. T. & Godber, J. S. (1989). The enhancement of nonheme iron bioavailability by beef protein in the rat. Journal of Nutrition 119, 446452.CrossRefGoogle ScholarPubMed
Greger, J. L. (1989). Effect of dietary protein and minerals on calcium and zinc utilization. CRC Critical Reviews in Food Science and Nutrition 28, 249271.CrossRefGoogle ScholarPubMed
Greger, J. L., Abernathy, R. P. & Bennett, O. A. (1978). Zinc and nitrogen balance in adolescent females fed varying levels of zinc and soy protein. American Journal of Clinical Nutrition 31, 112116.CrossRefGoogle ScholarPubMed
Hallberg, L. (1981). Bioavailability of dietary iron in man. Annual Review of Nutrition 1, 123147.CrossRefGoogle ScholarPubMed
Hallberg, L. (1987). Wheat fiber, phytates and iron absorption. Scandinavian Journal of Gastroenterology 22, 7379.CrossRefGoogle Scholar
Hurrell, R. F., Lynch, S. R., Trinidad, T. P., Dassenko, S. A. & Cook, J. D. (1988). Iron absorption in humans: bovine serum albumin compared with beef muscle and egg white. American Journal of Clinical Nutrition 47, 102107.CrossRefGoogle ScholarPubMed
Hurrell, R. F., Lynch, S. R., Trinidad, T. P., Dassenko, S. A. & Cook, J. D. (1989). Iron absorption in humans as influenced by bovine milk proteins. American Journal of Clinical Nutrition 49, 546552.CrossRefGoogle ScholarPubMed
Kane, A. P. & Miller, D. D. (1984). In vitro estimation of the effects of selected proteins on iron bioavailability. American Journal of Clinical Nutrition 39, 393401.Google ScholarPubMed
Layrisse, M., Martinez-Torres, C., Leets, I., Taylor, P. & Ramírez, J. (1984). Effect of histidine, cysteine, glutathione or beef on iron absorption in humans. Journal of Nutrition 114, 217223.CrossRefGoogle ScholarPubMed
Lönnerdal, B., Stanislowski, A. G. & Hurley, L. S. (1980). Isolation of a low molecular weight zinc binding ligand from human milk. Journal of Inorganic Biochemistry 12, 7178.CrossRefGoogle ScholarPubMed
Martinez-Torres, C. & Layrisse, M. (1971). Iron absorption from veal muscle. American Journal of Clinical Nutrition 24, 521540.CrossRefGoogle ScholarPubMed
Meadows, N. J., Grainger, S. L., Ruse, W., Keeling, P. W. N. & Thompson, R. P. H. (1983). Oral iron and bioavailability of zinc. British Medical Journal 287, 10131014.CrossRefGoogle ScholarPubMed
Miles, C. W., Bodwell, C. E., Morris, E., Ziyad, J. A., Prather, E. S., Mertz, W. & Canary, J. J. (1987). Long-term consumption of beef extended with soy protein by men, women and children: I. Study design, nutrient intakes, and serum zinc levels. Plant Foods for Human Nutrition 37, 341359.CrossRefGoogle ScholarPubMed
Miller, D. D., Schricker, B. R., Rasmussen, R. R. & Van Campen, D. (1981). An in vitro method for estimation of iron availability from meals. American Journal of Clinical Nutrition 34, 22482256.CrossRefGoogle Scholar
Mills, C. F. (1985). Dietary interactions involving the trace elements. Annual Review of Nutrition 5, 173193.CrossRefGoogle ScholarPubMed
Monsen, E. R. (1988). Protein-iron interactions: influences on absorption, metabolism, and status. In Nutrient Interactions, pp. 149162 [Bodwell, C. E. and Erdman, J. W. Jr, editors]. New York: Marcel Dekker.Google Scholar
Narasinga Rao, B. S. & Prabhavathi, T. (1978). An in vitro method for predicting the bioavailability of iron from foods. American Journal of Clinical Nutrition 31, 169175.CrossRefGoogle Scholar
Nosworthy, N. & Caldwell, R. A. (1988). The interaction of zinc (II) and phytic acid with soya bean glycinin. Journal of the Science of Food and Agriculture 44, 143150.Google Scholar
Politz, M. L. & Clydesdale, F. M. (1988). Effect of enzymatic digestion, pH and molecular weight on the iron solubilizing properties of chicken muscle. Journal of Food Science 53, 10811090.Google Scholar
Rodríguez, C. J., Morr, C. V. & Kunkel, M. E. (1985). Effect of partial phytate removal and heat upon iron bioavailability from soy protein-based diets. Journal of Food Science 50, 10721075.CrossRefGoogle Scholar
Rosenberg, I. H. & Solomons, N. W. (1982). Biological availability of minerals and trace elements: a nutritional overview. American Journal of Clinical Nutrition 35, 781782.CrossRefGoogle ScholarPubMed
Sandström, B. (1988). Factors influencing the uptake of trace elements from the digestive tract. Proceedings of the Nutrition Society 47, 161167.CrossRefGoogle ScholarPubMed
Sandström, B., Davidsson, L., Cederblad, A. & Lönnerdal, B. (1985). Oral iron, dietary ligands and zinc absorption. Journal of Nutrition 115, 411414.CrossRefGoogle ScholarPubMed
Sayers, M. H., Linch, S. R., Jacobs, P., Charlton, R. W., Bothwell, T. H., Walter, R. B. & Mayet, F. (1973). The effects of ascorbic acid supplementation on the absorption of iron in maize, wheat and soya. British Journal of Haematology 24, 209218.CrossRefGoogle ScholarPubMed
Schricker, B. R., Miller, D. D. & Van Campen, D. (1982). In vitro estimation of iron availability in meals containing soy products. Journal of Nutrition 112, 16961705.CrossRefGoogle ScholarPubMed
Slatkavitz, C. A. & Clydesdale, F. M. (1988). Solubility of inorganic iron as affected by proteolytic digestion. American Journal of Clinical Nutrition 47, 487495.CrossRefGoogle ScholarPubMed
Snedeker, S. M. & Greger, J. L. (1983). Metabolism of zinc, copper and iron as affected by dietary protein, cysteine and histidine. Journal of Nutrition 113, 644652.CrossRefGoogle ScholarPubMed
Solomons, N. W. (1982). Factors affecting the bioavailability of zinc. Journal of the American Dietetic Association 80, 115121.CrossRefGoogle ScholarPubMed
Solomons, N. W. & Jacob, R. A. (1981). Studies on the bioavailability of zinc in humans: effects of heme and nonheme iron on the absorption of zinc. American Journal of Clinical Nutrition 34, 475482.CrossRefGoogle ScholarPubMed
Solomons, N. W., Pineda, O., Viteri, F. & Sandstead, H. H. (1983). Studies on the bioavailability of zinc in humans: mechanism of intestinal interaction of nonheme iron and zinc. Journal of Nutrition 113, 337349.CrossRefGoogle ScholarPubMed
Taylor, P. G., Martínez-Torres, M. A., Romano, E. L. & Layrisse, M. (1986). The effect of cysteine-containing peptides released during meat digestion on iron absorption in humans. American Journal of Clinical Nutrition 43, 6871.CrossRefGoogle ScholarPubMed
Thompson, D. B. & Erdman, J. W. (1984). The effect of soy protein isolate in the diet on retention by the rat of iron from radio-labeled test meals. Journal of Nutrition 114, 307311.CrossRefGoogle Scholar
Valberg, L. S., Flanagan, P. R. & Chamberlain, M. J. (1984). Effects of iron, tin, and copper on zinc absorption in humans. American Journal of Clinical Nutrition 40, 536541.CrossRefGoogle ScholarPubMed
Van Dokkum, W., Wesstra, A., Luyken, R. & Hermus, R. J. J. (1986). The effects of a high-animal- and high-vegetable-protein diet on mineral balance and bowel function of young men. British Journal of Nutrition 56, 341348.CrossRefGoogle ScholarPubMed
Van Stratum, P. G. & Rudrum, M. (1979). Effects of consumption of processed soy proteins on minerals and digestion in man. Journal of the American Oil Chemists' Society 56, 130134.CrossRefGoogle ScholarPubMed
Vaquero, M. P., Van Dokkum, W., Bos, K. D. & Wolters, M. G. E. (1992). In vitro availability of calcium, magnesium, iron, copper, and zinc from white or brown bread separately or in combination with other foods. Revista Española de Ciencia y Tecnologia de Alimentos 32, 4757.Google Scholar
Wapnir, R. A. (1989). Protein digestion and the absorption of mineral elements. Advances in Experimental Medicine and Biology 249, 95115.CrossRefGoogle ScholarPubMed
Wapnir, R. A. & Devas, D. (1995). Copper deficiency: interaction with high-fructose and high-fat diets in rats. American Journal of Clinical Nutrition 61, 105110.CrossRefGoogle ScholarPubMed
Wapnir, R. A. & Stiel, L. (1986). Zinc intestinal absorption in rats: specificity of amino acids as ligands. Journal of Nutrition 116, 21712179.CrossRefGoogle ScholarPubMed
Wolters, M. G. E., Diepenmaat, H. B., Hermus, R. J. J. & Voragen, A. G. J. (1993). Relation between in vitro availability of minerals and food composition: a mathematical model. Journal of Food Science 58, 13491355.CrossRefGoogle Scholar