Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T01:09:15.248Z Has data issue: false hasContentIssue false

A stable isotope study of zinc kinetics in Irish setters with gluten-sensitive enteropathy

Published online by Cambridge University Press:  09 March 2007

N. M. Lowe
Affiliation:
Departments of Medicine, University of Liverpool, PO Box 147, Liverpool L69 3BX
E. J. Hall
Affiliation:
Veterinary Pathology University of Liverpool, PO Box 147, Liverpool L69 3BX
R. S. Anderson
Affiliation:
Veterinary Clinical Science and Animal Husbandry, University of Liverpool, PO Box 147, Liverpool L69 3BX
R. M. Batt
Affiliation:
Veterinary Pathology University of Liverpool, PO Box 147, Liverpool L69 3BX
M. J. Jackson
Affiliation:
Departments of Medicine, University of Liverpool, PO Box 147, Liverpool L69 3BX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The short-term kinetics of Zn turnover were studied in Irish setters with gluten-sensitive enteropathy and control dogs following intravenous injection of 0·25 mg 96·5% enriched 70ZnCl2. The 70Zn enrichment of serum was found closely to obey two-compartment kinetics and the derived two-compartment decay equation was used to calculate the size and turnover of the two initial rapidly exchanging pools of body Zn. In normal Irish setters isotopic Zn initially equilibrates with a pool (a) of size 1·27 (SD 0·46) μmol/kg and then with a second pool (b) of size 6·83 (SD 1·72) μmol/kg. The fractional turnover of pool (b) was approximately one eighth that of pool (a). Enteropathic dogs showed no reduction in the size of either rapidly exchangeable Zn pool, reduction in serum Zn concentration or abnormality in Zn balance and hence these results do not support the possibility of an underlying Zn deficiency in this disorder.

Type
Mineral metabolism in companion animals
Copyright
Copyright © The Nutrition Society 1995

References

REFERENCES

Cousins, R. J. & Leinart, A. S. (1988) Tissue specific regulation of zinc metabolism and metallothionein gene by interleukin 1. FASEB Journal 2, 28842890.CrossRefGoogle ScholarPubMed
Dunn, M. R. A. & Cousins, R. J. (1989) The kinetics of zinc metabolism in the rat: effect of dibutyryl cAMP. American Journal of Physiology 256, E420E430.Google ScholarPubMed
Fairweather-Tait, S., Jackson, M. J., Fox, T. E., Wharf, S. G., Eagles, J. & Croghan, P. (1993) The measurement of exchangeable pools of zinc using the stable isotope 70Zn. British Journal of Nutrition 70, 221234.CrossRefGoogle ScholarPubMed
Foster, D. M., Aamodt, R. L., Henkin, R. I. & Berman, M. (1979) Zinc metabolism in humans: a kinetic model. American Journal of Physiology 273, R340R349.Google Scholar
Golden, M. H. N. (1989) The diagnosis of Zn deficiency. In Zinc in Human Biology, pp. 323334 [Mills, C. F., editor]. London: Springer-Verlag.CrossRefGoogle Scholar
Hall, E. J. & Batt, R. M. (1990 a) Development of wheat-sensitive enteropathy in Irish setters: morphologic changes. American Journal of Veterinary Research 51, 978982.CrossRefGoogle ScholarPubMed
Hall, E.J. & Batt, R. M. (1990 b) Development of wheat-sensitive enteropathy in Irish setters: biochemical changes. American Journal of Veterinary Research 51, 983989.CrossRefGoogle ScholarPubMed
Hall, E.J. & Batt, R. M. (1991) Abnormal permeability precedes the development of a gluten-sensitive enteropathy in Irish Setter dogs. Gut 32, 749753.CrossRefGoogle ScholarPubMed
Hall, E. J. & Batt, R. M. (1992) Dietary modulation of gluten sensitivity in a naturally occurring enteropathy of Irish setter dogs. Gut 33, 198205.CrossRefGoogle Scholar
Hallbrook, T. & Hedelin, H. (1977) Zinc metabolism and surgical trauma. British Journal of Surgery 64, 271273.CrossRefGoogle Scholar
Hawkins, T., Marks, J. M., Plummer, V. M. & Greaves, M. W. (1976) Whole body monitoring and other studies of zinc-65 metabolism in patients with dermatological diseases. Clinical and Experimental Dermatology 1, 243252.CrossRefGoogle ScholarPubMed
Henkin, R. I., Foster, D. M., Aamodt, R. L. & Berman, H. (1984) Zinc metabolism in adrenal cortical insufficiency: effects of carbohydrate-active steroids. Metabolism 33, 491501.CrossRefGoogle ScholarPubMed
Jackson, M. J., Giugliano, R., Giugliano, L. G., Oliveira, E. F., Shrimpton, R. & Swainbank, I. G. (1988) Stable isotope metabolic studies of zinc nutrition in slum-dwelling, lactating women in the Amazon Valley. British Journal of Nutrition 59, 193203.CrossRefGoogle ScholarPubMed
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1982) Tissue Zn levels as an index of Zn status. Clinical Physiology 2, 333343.CrossRefGoogle Scholar
Jackson, M. J., Jones, D. A., Edwards, R. H. T., Swainbank, I. G. & Coleman, M. L. (1984) Zinc homeostasis in man: studies using a new stable isotope-dilution technique. British Journal of Nutrition 51, 199208.CrossRefGoogle ScholarPubMed
Lowe, N. M., Bremner, I. & Jackson, M. J. (1991) Plasma 65Zn kinetics in the rat. British Journal of Nutrition 65, 445455.CrossRefGoogle ScholarPubMed
Lowe, N. M., Green, A., Rhodes, J. M., Lombard, M., Jallan, R. & Jackson, M. J. (1993) Studies of human Zn kinetics using the stable isotope 70Zn. Clinical Science 84, 113117.CrossRefGoogle ScholarPubMed
Lowe, N. M., Rhodes, J. M., Lombard, M. G., Green, A., Jallan, R. & Jackson, M. J. (1992) Short term Zn kinetics in normal subjects and patients with alcoholic liver disease. FASEB Journal 6, A1087.Google Scholar
Miller, L. V., Hambidge, K. M., Naake, V. L., Hong, Z., Westcott, J. L. & Fennessey, P. V. (1994) Size of the zinc pools that exchange rapidly with plasma zinc in humans: alternative techniques for measuring and relations to dietary zinc intake. Journal of Nutrition 124, 268276.CrossRefGoogle ScholarPubMed
Shipley, R. A. & Clark, R. E. (1972) Tracer Methods For ‘In Vivo’ Kinetics. New York: Academic Press.Google Scholar
Wastney, M. E., Aamodt, R. L., Rumble, W. F. & Henkin, R. I. (1986) Kinetic analysis of Zn metabolism and its regulation in normal humans. American Journal of Physiology 251, R398R408.Google ScholarPubMed