Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T13:07:35.963Z Has data issue: false hasContentIssue false

The subcellular distribution of copper, zinc and iron in liver and kidney. Changes during copper deficiency in the rat

Published online by Cambridge University Press:  24 July 2007

Begoña Alfaro
Affiliation:
Department of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ
F. W. Heaton
Affiliation:
Department of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The subcellular distribution of copper, zinc and iron was investigated in liver and kidney homogenates from Cu-deficient and control rats. The supernatant fraction contained most Cu and Zn in control animals, but the highest proportion of Fe was in the microsomal fraction.

2. Cu deficiency reduced the concentration of the metal in all fractions, but the depletion was most severe and developed most rapidly in the supernatant fraction, indicating that the soluble cytoplasm is the site of Cu storage in the cell. The Fe content of the liver increased during Cu deficiency with Fe being deposited preferentially in the mitochondria.

3. All the Cu and most of the Zn in liver and kidney supernatant fractions occurred in four protein-containing fractions that were of similar molecular weights in both organs. A fraction of molecular weight 30000 was primarily concerned with Cu storage in mature rats.

4. The reduction in liver Zn during Cu deficiency appeared to be the result of impaired intestinal absorption and it is suggested that a small amount of Cu facilitates the absorption of Zn.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Alfaro, B. & Heaton, F. W. (1973). Br. J. Nutr. 29, 73.CrossRefGoogle Scholar
Andrews, P. (1965). Bioc1zem. J. 96, 595.Google Scholar
Carrico, R. J. & Deutsch, H. F. (1969). J. biol. Chem. 244, 6087.CrossRefGoogle Scholar
Carrico, R. J. & Deutsch, H. F. (1970). J. biol. Chem. 245, 723.CrossRefGoogle Scholar
Dacie, J. V. & Lewis, S. M. (1963). Practical Haematoloey 3rd ed., pp. 36, 402. London: J. and A. Churchill.Google Scholar
Davies, N. T., Bremner, I. & Mills, C. F. (1973). Biochem. Soc. Trans. 1, 985.CrossRefGoogle Scholar
Dempsey, H., Cartwright, G. E. & Wintrobe, M. M. (1958). Proc. Soc. exp. Biol. Med. 98, 520.CrossRefGoogle Scholar
Dowdy, R. P. (1969). Am. J. clin. Nutr. 22, 887.CrossRefGoogle Scholar
Edwards, C., Olson, K. B., Heggen, G. & Glenn, J. (1961). Proc. Soc. exp. Biol. Med. 107, 94.CrossRefGoogle Scholar
Evans, G. W. & Cornatzer, W. E. (1970). Fedn Proc. Fedn. Am Socs exp. Biol. 29, 695 Abstr.Google Scholar
Evans, G. W., Majors, P. F. & Cornatzer, W. E. (1970). Biochem. biophys. Res. Commun. 40, 1142.CrossRefGoogle Scholar
Evans, G. W., Myron, D. R., Cornatzer, N. F. & Cornatzer, W. E. (1970). Am. J. Physiol. 218, 298.CrossRefGoogle Scholar
Gregoriadis, G. & Sourkes, T. L. (1967). Can. J. Biochem. 45, 1841.CrossRefGoogle Scholar
Gubler, C. J., Lahey, M. E., Ashenbrucker, H., Cartwright, G. E. & Wintrobe, M. M. (1952). J. biol. Chem. 196, 209.CrossRefGoogle Scholar
Hermann, G. E. & Kun, E. (1961). Expl Cell Res. 22, 257.Google Scholar
Kagi, J. H. R. & Vallee, B. L. (1961). J. biol. Chem. 236, 2435.CrossRefGoogle Scholar
Lee, D. jr & Matrone, G. (1969). Proc. Soc. exp. Biol. Med. 130, 1190.CrossRefGoogle Scholar
Mills, C. F. & Mitchell, R. L. (1971). Br. J. Nutr. 26, 117.CrossRefGoogle Scholar
Murdoch, J. A. & Heaton, F. W. (1968). Comp. Biochem. Physiol. 26, 121.Google Scholar
Owen, C. A. jr & Orvis, A. L. (1970). Am. J. Physiol. 218, 88.CrossRefGoogle Scholar
Porter, H. (1970). In Trace Element Metabolism in Animals p. 237 [Mills, c. F, editor]. Edinburgh and London: E. and S. Livingstone.Google Scholar
Pulido, P., Kägi, J. H. R. & Vallee, B. L. (1966). Biochemistry, Easton 5, 1768.Google Scholar
Starcher, B. C. (1969). J. Nutr. 97, 321.CrossRefGoogle Scholar
Suttle, N. F. & Mills, C. F. (1966). Br. J. Nutr. 20, 135.CrossRefGoogle Scholar
Van Campen, D. (1970). In Trace Element Metabolism in Animals p. 287 [Mills, C. F, editor]. Edinburgh and London: E. and S. Livingstone.Google Scholar