Skip to main content
Log in

Introduction and constitutive expression of a tobacco hornworm (Manduca sexta) chitinase gene in soybean

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Embryogenic soybean [Glycine max (L.) Merrill] cultures were transformed with a Manduca sexta chitinase (msc) gene using microprojectile bombardment. A 1.7 kb DNA fragment encoding a tobacco hornworm chitinase was cloned into the rice transformation vector pGL2, under the control of the maize ubiquitin promoter and linked to the hpt gene as a selectable marker. After bombardment, hygromycin-resistant tissues were isolated and cultured to give rise to clones of transgenic material. Four hygromycin-resistant clones were converted into plants. Two clones were positive for the msc gene via polymerase chain reaction (PCR) and Southern blot analysis. The integration inheritance, and expression of transgenes were confirmed by molecular analysis of transgenic soybean plants. Progeny analysis showed that the introduced genes were inherited and segregated in a 3:1 Mendelian fashion. DNA blot experiments and progeny inheritance analysis indicated that the plants contained several copies of the msc gene and that the insertion occurred at a single locus. Northern blotting analysis confirmed the expression of the transgenes. Western blot analysis of transgenic plants and their progeny revealed the presence of a protein with a molecular weight of 48kDa that reacted with the Manduca sexta antibody. Progeny from the chitinase-positive plants were tested for their resistance to the soybean cyst nematode. Plants expressing the insect chitinase did not manifest enhanced resistance to the soybean cyst nematode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakane, Y.; Zhu, Q.; Matsumia, M.; Muthukrishnan, S.; Kramer, K. J. Properties of catalytic, linker and chitin binding domains of insect chitinase. Insect Biochem. Mol. Biol., 33:631–648; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, R. L.; Noel, G. R.; Anand, S. C.; Shannon, J. G. Registration of Fayette soybean. Crop Sci. 28:1028–1029; 1988.

    Google Scholar 

  • Brants, A.; Brown, C. R.; Earle, E. D. Trichoderma harzianum endochitinase does not provide resistance to Meloidogyne hapla in transgenic tobacco. J. Nematol. 32:289–296; 2000.

    CAS  PubMed  Google Scholar 

  • Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Church, G. M.; Gilbert, W. Genomic sequencing. Proc. Natl Acad. Sci. USA 81:1991–1995; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta, S. L.; Wood, J.; Hicks, J. B. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1:19–21; 1983.

    CAS  Google Scholar 

  • Ding, X.; Gopalakrishnan, B.; Johnson, L. B.; White, F. F.; Wang, X.; Morgan, T. D.; Kramer, K. J.; Muthukrishnan, S. Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgen. Res. 7:77–84; 1998.

    Article  CAS  Google Scholar 

  • Edwards, K.; Johnstone, C.; Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19:1349; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Finer, J. J. Apical proliferation of embryogenic tissue of soybean [Glycine max (L.) Merrill] Plant Cell Rep. 7:238–241; 1988.

    Article  Google Scholar 

  • Finer, J. J.; McMullen, M. D. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep. 8:586–589; 1990.

    Article  Google Scholar 

  • Finer, J. J.; McMullen, M. D. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. Plant 27:175–182; 1991.

    Google Scholar 

  • Finer, J. J.; Vain, P.; Jones, M. W. McMullen, M. D. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11:323–328; 1992.

    Article  CAS  Google Scholar 

  • Jackson, S. A.; Zhang, P.; Chen, W. P.; Phillips, R. L.; Friebe, B.; Muthukrishnan, S.; Gill, B. S. High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor. Appl. Genet. 103:56–62; 2001.

    Article  CAS  Google Scholar 

  • Jefferson, R. A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405; 1987.

    CAS  Google Scholar 

  • Koga, D.; Funakoshi, T.; Mizuki, K.; Kramer, K. J.; Zen, K. C.; Choi, H. K.; Muthukrishnan, S. Immunoblot analysis of chitinolytic enzymes in integument and molting fluid of silkworm, Bombyx mori, and tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 22:305–311; 1992.

    Article  CAS  Google Scholar 

  • Kramer, K. J.; Corpuz, L. M.; Choi, H.; Muthukrishnan, S. Sequence of a CDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem. Mol. Biol. 23:691–701; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–684; 1970.

    Article  Google Scholar 

  • Mercer, C. F.; Greenwood, D. R.; Grant, J. L. Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood (Nematoda: Tylenchida). Nematologica 38:227–236; 1992.

    Article  Google Scholar 

  • Niblack, T. L.; Heinz, R. D.; Smith, G. S.; Donald, P. A. Distribution, density, and diversity of Heterodea glycines in Missouri. Suppl. J. Nematol. 25:880–886; 1993.

    CAS  Google Scholar 

  • Nickell, C. D.; Noel, G. R.; Thomas, D. J.; Waller, R. Registration of Jack soybean. Crop Sci. 30:1365; 1990.

    Article  Google Scholar 

  • Pawlowski, W. P.; Somers, D. A. Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol. Biotechnol. 6:17–30; 1996.

    PubMed  CAS  Google Scholar 

  • Pawlowski, W. P.; Somers, D. A. Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc. Natl Acad. Sci. USA 95:12106–12110; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Perry, R. N.; Trett, M. W. Ultrastructure of the eggshell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Revue Nématol. 9:399–403; 1986.

    Google Scholar 

  • Qiu, J.; Hallmann, J.; Kokalis-Burelle, N.; Weaver, D. B.; Rodriguez-Kabana, R.; Tuzun, S. Activity and differential induction of chitinase isozymes in soybean cultivars resistant or susceptible to root-knot nematodes. J. Nematol. 29:523–530; 1997.

    CAS  Google Scholar 

  • Rahimi, S.; Perry, R. N.; Wright, D. J. Identification of pathogenesis-related proteins induced in leaves of potato plants infected with potato cyst nematodes, Globodera species. Physiol. Mol. Plant Pathol. 49:49–59; 1996.

    Article  CAS  Google Scholar 

  • Roberts, C. A.; Marek, S. H.; Niblack, T. L.; Karr, A. L. Parasite Meloidogyne and mutualistic Acremonium increase chitinase in tall fescue. J. Chem. Ecol. 18:1107–1116; 1992.

    Article  CAS  Google Scholar 

  • Rohan, R. M.; King, D.; Frels, W. I. Direct sequencing of PCR-amplified junction fragments from tandemly repeated transgenes. Nucleic Acids Res. 18:6089–6095; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, T. M.; Gordon-Kamm, W. J.; Daines, R. J.; Start, W. G.; Lemaux, P. G. Bialaphos selection of stable transformants from maize cell culture. Theor. Appl. Genet. 79:625–631; 1990.

    Article  CAS  Google Scholar 

  • Stewart, C. N. Jr.; Adang M. G.; All, J. N.; Boerma, H. R.; Cardineau, G.; Tucker, D.; Parrot, W. A. Genetic transformation, recovery, and characterization of soybean (Glycine max [L.] Merrill) transgenic for a synthetic Bacillus thuringiensis CRY IA(c) gene. Plant Physiol. 112:121–129; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Tian, H.; Riggs, R. D.; Crippen, D. L. control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. J. Nematol. 32:370–376; 2000.

    CAS  PubMed  Google Scholar 

  • Trick, H. N.; Dinkins, R. D.; Santarém, E. R.; Di, R.; Samoylov, V.; Meurer, C. A.; Walker, D. R.; Parrott, W. R.; Finer, J. J.; Collins, G. B. Recent advances in soybean transformation. Plant Tiss. Cult. Biotechnol. 3:9–26; 1997.

    Google Scholar 

  • Wang, X.; Ding, X.; Gopalakrishnan, B.; Morgan, T. D.; Johnson, L. B.; White, F. F.; Kramer, K. J. Characterization of a 46kDa insect chitinase from transgenic tobacco. Insect Biochem. Mol. Biol. 26:1055–1064; 1996.

    Article  CAS  Google Scholar 

  • Wrather, J. A.; Anderson, T. R.; Arsyad, D. M.; Gai, J.; Ploper, L. D.; Porta-Puglia, A.; Ram, H.; Yorinori, J. T. Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Dis. 81:107–110; 1997.

    Google Scholar 

  • Wright, M. S. Method of regenerating soybeans form cultured soybean cotyledonary nodes. US patent no. 4,992,375; 1991.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Trick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ornatowski, W., Jayaraj, J., Todd, T.C. et al. Introduction and constitutive expression of a tobacco hornworm (Manduca sexta) chitinase gene in soybean. In Vitro Cell.Dev.Biol.-Plant 40, 260–265 (2004). https://doi.org/10.1079/IVP2003508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003508

Key words

Navigation